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Abstract

In an information cascade experiment participants are confronted with artificial predecessors pre-
dicting in line with the BHW model (Bikchandani, S., Hirshleifer, D., & Welch, I. (1992). A theory of
fads, fashion, custom, and cultural change as informational cascades. Journal of Political Economy,
100, 992–1026). We study participants’ probability perceptions based on maximum prices for partic-
ipating in the prediction game. We find increasing maximum prices the more coinciding predictions
of predecessors are observed, regardless of whether additional information is revealed by these pre-
dictions. Individual price patterns of more than two thirds of the participants indicate that cascade
behavior of predecessors is not recognized.
� 2007 Elsevier B.V. All rights reserved.

JEL classification: C91; D81; D82

PsycINFO classification: 2340; 3920

Keywords: Informational cascades; Experiments; Bayes’ rule
0167-4870/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.joep.2007.05.003

* Corresponding author. Tel.: +49 30 2093 1594.
E-mail addresses: grebe@wiwi.hu-berlin.de (T. Grebe), j.schmid@ww.tu-berlin.de (J. Schmid), as@berle-

con.de (A. Stiehler).

mailto:grebe@wiwi.hu-berlin.de
mailto:j.schmid@ww.tu-berlin.de
mailto:as@berlecon.de
mailto:as@berlecon.de


198 T. Grebe et al. / Journal of Economic Psychology 29 (2008) 197–209
1. Introduction

Information cascades as modelled by Bikchandani, Hirshleifer, and Welch (1992),
henceforth BHW, are a popular approach to explain herding behavior.1 The BHW model
offers explanations for many economic and social phenomena, such as fashion trends and
conformity in consumption or investment decisions. BHW explain herding within a
rational choice approach assuming that agents update beliefs according to Bayes’ rule.
The model shows that in a choice situation under incomplete information it may be
rational to follow predecessors and to disregard one’s own private information. Hence a
cascade starts and no further information is aggregated in the observable decisions. Agents
may follow decisions of predecessors even though the aggregated private information
would suggest the opposite. Individual rationality may thus lead to market inefficiencies.

The BHW model implicitly assumes that agents recognize cascade behavior of others. If
not, perceived probabilities of making a good decision increase with the length of the cas-
cade even though no further information is aggregated. Thus, boundedly rational behavior
of agents would result in an overvaluation of public information and thereby cause further
economic distortions. Consumers, for instance, might misinterpret the number of previous
sales as a signal for quality. This could unreasonably increase their willingness to pay for
best-sellers compared to similar competing products.

The predictions of BHW were confirmed in first experimental tests by Anderson and
Holt (1997), henceforth AH. In numerous subsequent experimental studies cascade behav-
ior is analyzed by varying the structure of available information or selling private
information.2

The results suggest that individuals, if confronted with more complex decision tasks
than in the original AH experiment, tend to overestimate private information and thus
to deviate from the rational cascade pattern. As pointed out in Kübler and Weizsäcker
(2005), a common feature of many cascade studies is that length and strength of cascades
are correlated, i.e., the rate of deviations from the rational cascade pattern decreases with
the number of observed coinciding predictions. Oberhammer and Stiehler (2002) investi-
gate cascade behavior in a simple symmetric design, where even counting leads to correct
urn predictions if predecessors behave rationally.3 In order to get an indication of subjects’
probability perceptions, they asked subjects to submit maximum prices they are willing to
pay for participating in the prediction game using the BDM procedure (Becker, DeGroot,
& Marschak, 1964). These prices generally increase in the length of the cascade.

Error models that include the assumption that subjects incorporate erroneous play of
predecessors can account for the observed price increases, as well as for the correlation
of length and strength of cascades. However, all these phenomena could also be caused
by subjects who do not recognize rational cascade behavior of others due to limited depth
of reasoning. This study focusses on the impact of the latter, by excluding the possible
effect of presumed erroneous play of predecessors.
1 For a survey of studies on information cascades see Bikchandani, Hirshleifer, and Welch (1996).
2 See, e.g., Willinger and Ziegelmeyer (1998), Kraemer, Nöth, and Weber (2006), Nöth and Weber (2003), Celen

and Kariv (2004), or Kübler and Weizsäcker (2004).
3 In the AH experiment, prediction errors increase up to 50% in asymmetric decision situations where simple

counting of predecessors’ predictions does not lead to a correct urn prediction (Huck & Oechssler, 2000). In these
situations the rule ‘‘follow your own signal’’ offers better predictions than Bayesian updating.
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One can find numerous examples where deviations from theoretically predicted behav-
ior could be both due to irrational behavior of individuals and to rational responses to the
(presumed) irrational behavior of others. To disentangle these two effects, several research-
ers conducted experiments in which humans interact with artificial players that follow
clearly defined decision rules and thus are perfectly predictable. For example, Fehr and
Tyran (2001) investigated whether monetary inertia are due to individual money illusion
or to rational responses to presumed money illusion of other players. To this end, they
let subjects interact both with other human players and with automated agents. Harrison
(1989) and Cason (1995) analyzed reasons for off–equilibrium bidding behavior in auction
experiments using preprogrammed ‘‘Nash bidders’’, i.e., agents always following the equi-
librium bidding strategy.

Pursuing a similar approach, we use a simple cascade design as in Oberhammer and
Stiehler (2002) and confront human subjects with computerized predecessors. These arti-
ficial agents follow a simple counting rule, thus predict according to BHW, and – by
definition – never err. The functioning of the artificial agents is explained to the subjects
in detail. Further, as in Oberhammer and Stiehler (2002), the BDM mechanism is used
to elicit prices as indicators of subjects’ probability perceptions. Using the strategy
method, we ask subjects to state their predictions and maximum prices for all possible
decision situations. Our procedure results in observing complete individual price setting
patterns, and assures that all decision situations are on the equilibrium path.

We find that most subjects predict according to theory but many submit increasing
maximum prices the more coinciding predictions of predecessors they observe, regardless
of whether additional information is revealed by these predictions. We conclude that the
majority of participants do not recognize cascade behavior of predecessors.

The remainder of the paper is organized as follows. In Section 2 the experimental design
and procedures are described. In Section 3 hypotheses are derived for both rational behav-
ior as assumed in the BHW model and behavior based on the assumption that subjects do
not recognize cascade behavior of others. The results are presented in Section 4. Section 5
concludes.
2. Experimental design and procedure

2.1. Experimental scenario

There are two urns, A and B, with five balls each (three black balls and two white balls
and vice versa). At the beginning of each round of the game, one urn is randomly chosen
with equal probability. Participants predict the randomly chosen urn. As participants’ pri-
vate information a ball is drawn from the urn and its color revealed. As public informa-
tion, urn predictions of predecessors (if any) are announced. Participants are credited 100
ECU (Experimental Currency Units) for correct urn predictions and nothing otherwise.
Participants are further asked to submit maximum prices pmax they are willing to pay to
participate in the prediction game, i.e., to seize the opportunity of winning 100 ECU.
As an incentive compatible mechanism to elicit subjects’ maximum willingness to pay
we implement the BDM mechanism: Subjects’ maximum prices are compared to a random
price pr, drawn from a uniform distribution in the interval [0,100]. If the random price is
equal or lower than the maximum price (pr 6 pmax), the participant is credited the amount
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resulting from her urn prediction minus the random price. Otherwise, the participant earns
nothing.

If participants were risk neutral and maximized their income according to standard
expected utility theory, the submitted maximum prices would perfectly reflect their win-
ning probability perceptions. But these assumptions are hardly satisfied as many experi-
mental studies on decision making show.4 However, we are not interested in absolute
probability levels, but only in qualitative results. Therefore, prices are a meaningful mea-
sure to answer our research question if higher prices reflect higher probability perceptions.
To check this, we do not only elicit maximum prices but also ask subjects to submit sub-
jective probabilities for the correctness of their urn predictions.
2.2. Implementation of artificial agents

In this cascade experiment a subject’s predecessors are artificial agents, whose predic-
tions are clearly defined by simple counting, i.e., agents predict according to the majority
of (public and private) signals in favor of urn A or B. Note that in the applied symmetric
information structure this leads to the same urn predictions as Bayesian updating (Ander-
son & Holt, 1997). Thus, urn predictions of artificial agents are in line with BHW. In case
of an equal number of signals in favor of urn A and B, artificial agents decide according to
their private signal. This tie-breaking rule simplifies the updating process compared to a
randomization between urn A and B, as assumed by BHW.

As described in Section 2.4, we precisely explained the functioning of the artificial
agents to our participants. One may object that, by this, we influenced subjects’ decision
making. Admittedly, we taught participants to predict according to BHW. But note that
we are interested in price setting behavior rather than in urn predictions.
2.3. Use of the strategy method

As we wanted to observe complete individual price setting patterns, participants are
asked to state their decisions for all situations that may arise from the decisions made
by up to five artificial predecessors. Depending on the subject’s own position (1–6), the
color of the privately drawn ball (black or white), and the history regarding predecessors’
predictions, there are 74 decision situations in total (see Section 3.2) for which participants
have to submit their urn predictions, maximum prices, and subjective probabilities. One of
these 74 situations is determined to be payoff-relevant as follows:

1. One urn (A or B) is randomly chosen.
2. Subjects’ position (1–6) is randomly determined.
3. For each artificial agent a ball is drawn from the chosen urn. The agents predict accord-

ing to the defined decision rules. Their predictions are publicly announced.
4. At the (real) subject’s position a ball is drawn and the color announced.
4 For surveys of experimental studies on individual decision making under risk and uncertainty see, e.g.,
Camerer (1995) or Hey (1991).
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Finally, the random price is drawn from all integers between 0 and 100 and the payoffs
are calculated according to the rules described in Section 2.1.
2.4. Procedure

At the beginning of a session participants were provided with written instructions as
well as with a supplementary sheet on the working of the BDM mechanism. The instruc-
tions included a detailed description of the artificial agents’ decision rules. It was empha-
sized that their predictions were uniquely determined by these rules. We explained the
rules in terms of counting, not in terms of probabilities, in order to make them as traceable
as possible. It was also made explicit that all predecessors’ decisions were decisions of arti-
ficial agents.5

After reading the instructions it was demonstrated how the payoff-relevant situation
would be determined. Thereby, we repeatedly drew balls (colored table tennis balls) from
a randomly chosen urn (opaque blue bags), explained the resulting prediction of the arti-
ficial agent, and wrote it on a blackboard. The aim of this procedure was to familiarize the
subjects with the formation of a sequence of artificial predecessors’ predictions.

Prior to the experiment participants answered several control questions about the deci-
sion rules of the artificial predecessors and the working of the price mechanism. Thereby,
subjects had to state the prediction that an artificial agent would make in 8 different deci-
sion situations. Subjects who answered all questions correctly at first go were credited € 5.
This incentive was announced in the instructions. Participants who answered some of the
questions incorrectly had to answer these questions again and were encouraged to ask for
additional explanation.

In the experiment participants submitted their decisions for all 74 situations sequen-
tially displayed on the computer screen in random order. After the decisions were taken
the payoff-relevant situation was determined, the price was randomly chosen, and subjects
were paid in cash. The choice of the payoff-relevant situation and the draw of the random
price were done by one of the participants by hand, using real urns, balls, dice, and chips
with numbers from 1 to 100.

The experiment (using the software toolkit z-Tree, Fischbacher, 2007), was conducted
at Humboldt University at Berlin. We ran 4 sessions with a total of 39 subjects, mainly
business and economics students. In order to avoid losses a show-up fee of 100 ECU
(equivalent to €10) was paid. The experiment lasted about 80 min. Average earnings
amounted to approximately €17.
3. Theory, notation, and hypotheses

3.1. Bayes’ rule

In a symmetric cascade structure in which predecessors update information in line
with Bayes’ rule and predict according to their private signal in case of a tie, posterior
5 Instructions and control questions may be downloaded at http://www.wiwi.hu-berlin.de/institute/wt1/papers/
2006/instructions.pdf.

http://www.wiwi.hu-berlin.de/institute/wt1/papers/2006/instructions.pdf
http://www.wiwi.hu-berlin.de/institute/wt1/papers/2006/instructions.pdf
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probabilities just depend on the number of signals in favor of urns A and B. In our setting,
these probabilities can be calculated as follows:6

PrfAjdg ¼ 1

1þ 2
3

� �d and PrfBjdg ¼ 1

1þ 2
3

� ��d : ð1Þ

Thereby, d is defined as the difference between the number of A and B signals. Posterior
probabilities increase in the difference in favor of the respective urn. Thus, rational sub-
jects would recognize that they should ignore their own signal once a difference of
d = 2(�2) can be inferred from the predecessors’ predictions. In this case they should al-
ways predict according to the ongoing cascade even if their private signal does not match
the cascade. Therefore, no further information can be inferred from their predictions. Pos-
terior probabilities remain constant at Pr{Ajd = 3} = 0.77 after receiving a signal in accor-
dance with the ongoing cascade or at Pr{Ajd = 1} = 0.60 after receiving an opposed
signal.

3.2. Notation

We describe and classify the different situations a subject may be confronted with, as
follows: Predecessors’ predictions are denoted by capital letters (A or B), private signals
by small letters (a and b). For example, ABb refers to a situation in which a subject acts
third in the sequence, sees a ball in favor of urn B as her private signal, and observes that
one of her predecessors (the first agent) has predicted ‘‘A,’’ and one (the second agent) has
predicted ‘‘B.’’ We denote these situations as ‘‘decision situations.’’

We refer to private signals as either pro or contra signals, depending on what a rational
player would do after observing the respective signal: After observing a pro signal, the
player predicts the urn suggested by the signal (or is indifferent which urn to choose); after
observing a contra signal, she rationally predicts against it. Therefore, as long as no cas-
cade has started, all signals are pro signals, because no player can gain by ignoring her
signal.

We classify decision situations where no cascade has started yet as cascade positions �3,
�2, and �1. Cascade position �3 refers to a ‘‘balanced sample.’’ This means that prede-
cessors’ decisions together with the private signal reveal a probability of 0.5 for each urn.
Thus, either prediction is in line with rational behavior. Cascade position �2 refers to sit-
uations in which equally many predecessors have predicted either urn. Consequently, pre-
decessors’ decisions together with the private signal reveal a probability of 0.6 for the urn
indicated by the private signal. At cascade position �1, there is already a one-prediction
majority for one of the urns among the predecessors and the private signal matches that
majority. The probability for predicting correctly is 0.69.

We refer to a player’s position at which a cascade starts as cascade position 0. A player
at cascade position 0 rationally ignores her signal and predicts in line with the majority of
predecessors in any case. Despite the fact that the optimal decision is unaffected by the pri-
vate signal, the probability of predicting correctly depends on whether she has observed a
pro or a contra signal.
6 See Anderson and Holt (1997).



Table 1
Decision situations

Private signal Cascade position Decision situations Number

Pro �3 Ab; Ba; ABAb; ABBa; BAAb; BABa; ABABAb 14
ABABBa; ABBAAb; ABBABa; BABAAb

BABABa; BAABAb; BAABBa

�2 a; b; ABb; ABa; BAb; BAa; ABABb; ABABa; ABBAb 14
ABBAa; BAABb; BAABa; BABAb; BABAa

�1 Aa; Bb; ABAa; ABBb; BAAa; BABb; ABABAa; ABABBb 14
ABBAAa; ABBABb; BABAAa; BABABb; BAABAa; BAABBb

Pro 0 AAa; BBb; ABAAa; ABBBb; BAAAa; BABBb 6
1 AAAa; BBBb; ABAAAa; BABBBb; ABBBBb; BAAAAa 6
2 AAAAa; BBBBb 2
3 AAAAAa; BBBBBb 2

Contra 0 AAb; BBa; ABAAb; ABBBa; BAAAb; BABBa 6
1 AAAb; BBBa; ABAAAb; ABBBBa; BAAAAb; BABBBa 6
2 AAAAb; BBBBa 2
3 AAAAAb; BBBBBa 2

Total 74
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Positions within the cascade are referred to as cascade positions 1, 2, and 3. This means
that 1, 2, or 3 predecessors have already ignored their private signal and have predicted
according to the majority of predictions they observed. Thus, the probabilities of predict-
ing correctly after receiving a pro or a contra signal at cascade positions 1, 2, or 3 equal
those at cascade position 0.

There are thus seven cascade positions in total.7 In Table 1, all cascade positions and
the corresponding decision situations are summarized.

3.3. Hypotheses

As derived in Section 3.1, posterior probabilities of predicting correctly increase
between cascade positions �3 and �1. With the prediction of the agent at cascade position
0, the cascade starts. From then on, probabilities remain constant. The resulting probabil-
ity pattern is summarized in panel (a) of Fig. 1.

As for 38 out of 39 subjects (97.4%) we observe highly significant positive correlations
between maximum prices and subjective probabilities,8 we are confident in using the sub-
mitted maximum prices to test our hypotheses.

Hypothesis according to the BHW model: Individuals update information according to
Bayes’ rule and take cascade behavior of others into account.
7 Remember that cascade positions are not equivalent to the position in the decision sequence at which a player
acts. As an example, consider decision situations AAb and BAAAb which both belong to cascade position 0.

8 The Pearson correlation coefficient is significant on the 1%-level for all but one subjects. All significant
coefficients are between 0.44 and 0.96, with a median of 0.85. Thus, a majority of subjects exhibit a nearly linear
correlation. The non-parametric Spearman’s rank-order correlation coefficient is significant on the 1%-level for all
39 subjects. A possible explanation for correlations that are not linear is risk aversion.
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Price setting behavior at cascade positions �3 to 0 is as follows:
(a) p�3pro

max < p�2pro
max < p�1pro

max < p0pro
max :

Price setting behavior at cascade positions 0–3 is as follows:
(b) p0pro

max ¼ p1pro
max ¼ p2pro

max ¼ p3pro
max ;

(c) p0con
max ¼ p1con

max ¼ p2con
max ¼ p3con

max :

Thereby, e.g., we refer to p0con
max as the willingness to pay of a subject at cascade position 0,

who is confronted with a contra signal.
If subjects ignore the formation of a cascade, subjective probabilities increase the longer

a cascade continues, as illustrated in panel (b) of Fig. 1. From this, we derive our alterna-
tive hypothesis.

Behavioral hypothesis: Individuals update information according to Bayes’ rule, but do
not recognize cascade behavior of others.

Price setting behavior at cascade positions �3 to 0 is as follows:
(a) p�3pro

max < p�2pro
max < p�1pro

max < p0pro
max .

Price setting behavior at cascade positions 0–3 is as follows:
(b) p0pro

max < p1pro
max < p2pro

max < p3pro
max ,

(c) p0con
max < p1con

max < p2con
max < p3con

max .

Both the BHW and the behavioral hypothesis predict increasing maximum prices from
cascade position �3 to cascade position 0. But they differ in the predicted price patterns
from cascade position 0–3.

4. Results

4.1. Prediction behavior

The 39 subjects were asked to make decisions for 74 situations. The data set thus con-
sists of 39 · 74 = 2886 urn predictions, prices, and subjective probabilities. 546 observa-
tions are from situations at cascade position �3 where all predictions are consistent
with BHW since the posterior probability is 0.5. Of the remaining 2340 urn predictions
2268 (96.9%) are in line with BHW. 14 subjects (35.9%) predicted always in line with
the theory. The rate of seemingly rational predictors sharply increases up to 82.1% (32



Table 2
Prediction errors at different cascade positions

Cascade position Number of cases Number of errors [error rate] after. . .

Pro signal Contra signal

0 234 3 [1.3%] 30 [12.8%]
1 234 0 [0.0%] 11 [4.7%]
2 78 0 [0.0%] 0 [0.0%]
3 78 1 [1.3%] 1 [1.3%]

Total 626 4 [0.6%] 42 [6.7%]
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out of 39) if we include subjects who predicted in line with BHW in at least 95% of the
decision situations. Subjects followed their own signal in 77.1% of all tie-breaking
situations.9

At cascade positions 0–3 rational agents would follow their predecessors even after
receiving a contra signal. However, as summarized in Table 2, the error rate in such situ-
ations is higher (6.7%) than in cases where the signal coincides with the ongoing cascade
(0.6%). When subjects are confronted with pro signals, error rates are similarly low at cas-
cade positions 0–3 (between 0.0% and 1.3%). For contra signals, the error rate at cascade
position 0 is higher (12.8%) than at later cascade positions.

Subjects apparently overvalue their private information at early cascade positions but
assign more weight to the sequence of predecessors’ predictions the longer the cascade con-
tinues. Thus, longer cascades are more stable. This pattern is in line with numerous cas-
cade studies with interacting human subjects, which are summarized in Kübler and
Weizsäcker (2005). However, the rate of deviations from the cascade pattern is generally
lower in our experiment. This may be due to the fact that subjects distrust their human
predecessors’ decision making and thus follow their own signal more often. In addition,
our experimental design influenced subjects to predict in line with BHW.

4.2. Price setting behavior and subjective probabilities

The question remains whether subjects who predict in line with BHW also recognize
that a cascade formation takes place. Thus, in the following we concentrate on predictions
in line with BHW. For each of these 2812 predictions we have one maximum price for par-
ticipating in the prediction game and one subjective probability for making a correct pre-
diction. To give an overview of price setting behavior for different cascade positions and
private signals, we report average prices and probabilities for each of the 11 different cas-
cade position/signal combinations (7 cascade positions with a pro signal and 4 with a con-
tra signal).10 The aggregated results are summarized in Table 3. Fig. 2 illustrates the
aggregated price setting pattern.
9 This rate resembles the one in Oberhammer and Stiehler (2002) (79%), but is lower than rates found in
Anderson and Holt (1997) and Anderson (2001) (85.4% and 88.5%). However, their design was different to
Oberhammer and Stiehler’s and ours in a number of characteristics, e.g., they conducted a pencil-and-paper
experiment and used a different signal precision.
10 For the analysis of price setting behavior we excluded observations of one subject whose submitted maximum

prices are apparently unsystematic and often on an invariantly low level (85% of her maximum prices are below
10). However, including this observation does not change our findings.



Table 3
Price setting behavior and subjective probability statements

Private signal Cascade position Individual average prices Subjective prob. (in %) Prob. according to. . .

Mean Median SD Mean Median SD Behav. BHW

Pro �3 32.9 35.6 18.6 46.2 49.6 8.0 50.0 50.0
�2 39.7 39.2 17.3 51.6 53.4 9.0 60.0 60.0
�1 53.1 53.9 17.9 61.8 62.9 9.3 69.2 69.2

Pro 0 59.5 60.4 20.2 67.8 68.3 11.1 77.1 77.1
1 67.8 76.7 22.2 75.5 78.5 11.2 83.5 77.1
2 73.1 80.0 20.7 81.3 85.0 12.5 88.4 77.1
3 73.9 81.3 23.9 83.0 87.5 14.9 91.9 77.1

Contra 0 39.7 41.0 16.7 49.4 52.5 12.3 60.0 60.0
1 50.8 50.8 20.5 60.1 61.2 12.9 69.2 60.0
2 55.5 58.3 23.6 65.9 67.5 15.6 77.1 60.0
3 63.8 70.3 25.9 74.9 77.5 16.7 83.5 60.0
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Fig. 2. Average prices for different cascade positions and private signals.
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As predicted both by BHW and the behavioral hypothesis, maximum prices increase
from cascade position �3 to 0. When information cascades form, the submitted prices
at later cascade positions are higher than at earlier positions. This is in line with our behav-
ioral hypothesis. A similar pattern can be observed for the subjective probabilities.11 At
cascade position 3, subjects’ average maximum prices and subjective probabilities are
higher than predicted by BHW.

We also find that at each cascade position, average subjective probabilities exceed aver-
age submitted maximum prices, indicating a certain degree of risk aversion. The difference
between prices and subjective probabilities does not vary systematically over probability
levels and cascade positions.

In order to test our hypotheses, we ran non-parametric Friedman tests based on indi-
vidual average prices for each cascade position. Moreover, we used the individual average
11 Again, Kübler and Weizsäcker (2005) report similar patterns of subjective probability statements from other
cascade experiments.



Table 4
Friedman-tests and rank correlations for maximum prices and cascade positions

Friedman test Spearman rank corr.

Hypothesis (H0) v2 (sign.) q (sign. 2-tailed)

(a) p�3pro
max ¼ p�2pro

max ¼ p�1pro
max ¼ p0pro

max 91.02 (0.000) 0.482 (0.000)
(b) p0pro

max ¼ p1pro
max ¼ p2pro

max ¼ p3pro
max 42.86 (0.000) 0.272 (0.001)

(c) p0con
max ¼ p1con

max ¼ p2con
max ¼ p3con

max 64.45 (0.000) 0.374 (0.000)
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prices to calculate the Spearman rank correlation coefficient for each of the three conjec-
tured price/cascade position relationships. The results are presented in Table 4.

Both statistical measures confirm that subjects generally infer information from prede-
cessors’ urn predictions (see row a). However, all other hypotheses derived from the BHW
model are rejected (see rows b and c). We observe – in line with the alternative (behavioral)
hypothesis – significantly positive correlation coefficients at cascade positions 0–3 if con-
fronted with pro and contra signals, respectively. Applying the same tests to subjective
probabilities instead of prices yields the same results.

One may object that the price pattern may be due to the behavior of some subjects who
did not understand the rules of the game and/or the decision rules of artificial agents. As
predictions were in line with BHW in almost 97% of the decision situations and as 77% of
the subjects answered all control questions on the artificial agents correctly at first go, we
are confident that the results are not due to misunderstanding of the rules. However, to
check for any effect of incomprehension, we analyzed the data of the subsample of subjects
who predicted in line with BHW in more than 95% of the cases and answered all questions
about artificial predecessors correctly at first go.

Our findings turn out to be robust. We find similar price and probability patterns for
the considered subsample, i.e., the hypothesis according to BHW has to be rejected in
favor of our behavioral hypothesis (on the 5%-significance level).

The use of the strategy method does not only allow to analyze aggregate behavior, but
also to obtain complete individual price setting patterns. We calculate Spearman rank
Table 5
Individual price patterns

Identified groups Number of
subj.

% Identified patternsa

(a) (b) (c) Number of subj.

BHW subjects 7 17.9 + Ø Ø 7

Subj. completely ignoring the cascade formation 17 43.6 + + + 17

Subj. partly ignoring the cascade formation 10 25.6 + + Ø 2
+ Ø + 8

Others 5 12.8 Ø + + 1
Ø Ø + 1
Ø Ø Ø 2
+ � Ø 1

Total 39 100.0 39

a Identified price patterns at cascade positions �3 to 0 (column a) and at cascade positions 0–3 when confronted
with pro (column b), and contra signals (column c). Significant positive (negative) correlations (p < 0.05, 2-tailed)
between max. prices and cascade positions are indicated by + (�), insignificant correlations by Ø.
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correlation coefficients between submitted maximum prices and the respective cascade
positions for each single participant. According to the significance of the rank correlation
coefficients (at the 5% level), subjects are classified as shown in Table 5.

Only for 7 of the 39 subjects (17.9%), all three correlation coefficients are in line with the
standard BHW model, i.e., significantly positive at cascade positions �3 to 0, but insignif-
icant at cascade positions 0–3 (BHW subjects). For 17 subjects (43.6%), all three correla-
tion coefficients are significantly positive, i.e., completely in line with the behavioral
hypothesis. For another 10 subjects (25.6%), the correlation coefficient is significantly posi-
tive at cascade positions �3 to 0, and, either for pro or for contra signals, also at cascade
positions 0–3. Apparently, these subjects partly ignore the cascade formation. Finally, 5
subjects exhibit a price setting behavior that is not in line with either hypothesis. Overall,
price setting behavior of more than two thirds of the subjects indicates that cascade for-
mation is not consistently recognized whereas less than 20% of the subjects show price set-
ting patterns in line with the BHW model.
5. Conclusion

We designed an experiment to test whether individuals recognize cascade behavior of
others. Our findings suggest that many do not.

Participants’ urn predictions are in line with BHW, but average maximum prices
increase the longer a cascade continues. More than two thirds of our subjects obviously
ignore cascade behavior of predecessors. In contrast, only 18% set prices in accordance
with the BHW model.

In our experiment, subjects are informed about the decision rules of their artificial pre-
decessors. Errors by predecessors are excluded. Of course, this may lead to behavior that
differs from behavior in cascades with only human players. But if individuals do not rec-
ognize cascade behavior of others in our simple setting with artificial agents, then it is unli-
kely that they do so when their predecessors are humans.
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