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Abstract

The review introduces the reader to a theoretical method describing the transport properties of
dilute alloys on an ab initio basis. The calculations start from density or spin density functional
theory using a Green function formalism to investigate the underlying electronic structure
of the ideal and perturbed system on equal footing. The residual resistivity is calculated
solving the quasiclassical Boltzmann equation. The theory is outlined and various methods
and approximations developed to solve the transport equation are reviewed and compared with
respect to accuracy and validity. It will be demonstrated that the theory is able to quantitatively
account. The success and limitations of these calculations are discussed for a large variety of
systems, non-magnetic and ferromagnetic, in comparison with experimental results. It will be
shown that these calculations confirm empirical rules and concepts, elucidate the microscopic
processes behind the trends and can be used to make a theoretical material design.
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1. Introduction

Resistivity is one of the most important quantities, a fingerprint, to characterize a metallic
system. It is relatively easy to measure and contains a wealth of information about electrons
and their interactions with other quasiparticles in the system. At zero temperature many of
these interactions, for example lattice vibrations and magnons, are frozen out. The so-called
residual resistivity is obtained. The residual resistivity is caused by impurities, other lattice
imperfections or substitutional disorder. The residual resistivity of an ideal metallic system
would be zero. But that never happens in reality. Because of the significance of the residual
resistivity a huge variety of highly precise experimental data exists [1].

The theoretical description of transport properties was less developed since it is a task of
considerable complexity. Due to the influence of the external electric field the systems are no
longer in thermodynamic equilibrium. Principles of irreversible thermodynamics have to be
included [2–4]. Consequently, simple phenomenological models have been used to explain
the experimental data.

Within Drude’s classical theory of transport a diffusive motion of electrons under the
influence of the external field and the scattering processes is assumed. The resistivity is
described by two parameters only. The relaxation time τ , a parameter for the scattering, and
the velocity of the electrons vF . Usually both parameters are combined to the mean free path
" = τvF , the path of the electron between two scattering events. Obviously, this model is too
easy to account for the variety of experimental results since it neglects details of the electronic
structure of the system all together.

More powerful concepts are the so-called quasiclassical or the fully quantum mechanical
description. In the first case the electrons are considered quantum mechanically and the
response to the external field is included in a classical manner. A kinetic equation like the
Boltzmann equation has to be solved. The fully quantum mechanical description, however, is
based on Kubo’s formula [5]. In both cases a linear response to the external field is assumed.
The first approach is limited to cases where the mean free path of the electrons is large in
comparison with the lattice spacing and therefore to cases of weak disorder, for example dilute
alloys. The latter case is free of such limitations and can also be applied to strongly disordered
systems. It was shown [6,7] that both methods are equivalent if the mean free path is large in
comparison to the lattice spacing and small with respect to the sample dimension.

These methods combined with the advantages of density functional theory are powerful
tools and allow us to describe transport properties on an ab initio basis, that is, without any free
parameter. Applications to various dilute and concentrated alloy systems demonstrate that the
theories allow for a parameter-free treatment of transport and yield numerical results which
are in good agreement with experimental data [8–13]. The aim of this review is to make the
reader familiar with the formalism and the high quality of the ab initio calculations of transport
properties for dilute alloys based on solution of the Boltzmann equation.

The electronic structure of dilute alloys necessary to solve the Boltzmann equation can
be described very efficiently by density functional theory formulated within a Green function
method [14–19]. A Green function method is especially suited since the electronic structure
of the ideal, translationally invariant system and of the perturbed system, the system with an
impurity, that is, with broken translational symmetry may be calculated on equal footing. Both
components form the input to compute the impurity scattering matrix elements and to solve
the Boltzmann equation [8,12,20,21]. The connection of transport properties with anisotropic
electronic structure and the anisotropy of impurity scattering is illustrated in great detail. It
will be shown that these calculations elucidate the microscopic processes behind transport in a
fantasticmanner, confirm empirical rules and can be used tomake a theoretical material design.
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The review is organized as follows. A short summary of the underlying concept of
density functional theory and the Green function method is given in section 2. Section 3
is an introduction to the Boltzmann equation and a discussion of various methods and
approximations developed to solve the transport equation. A collection of results for non-
magnetic and ferromagnetic systems is presented in section 4.

2. Theory and method underlying the calculation

In order to develop a parameter-free method which enables us to calculate the transport
properties of metallic systems several aspects need to be considered. One of which is the
solution of the electronic structure problem for the translationally invariant system. The
fundamental concept behind all electronic structure methods is density functional theory. The
second one is the consideration of imperfect systems. We concentrate, in particular, on the
description of point defects in metals. Point defects break the translational symmetry of the
ideal host and the band structure methods can no longer be applied. It has been shown that the
multiple scattering theory is a powerful method to describe the scattering of Bloch waves in
perturbed systems.

This chapter is dedicated to elucidate these underlying concepts.

2.1. Density functional theory

The problemone needs to solve is themany-body problemof a system formed by the interacting
electrons and nuclei. With the Born–Oppenheimer approximation [22] the problem can be
reduced to a system ofN interacting electrons moving in the electrostatic potential Vext caused
by the nuclei

H =
N∑

i=1

(
− h̄2

2m

)
∂2

∂r2i
+

N∑

i=1
Vext(ri ) +

1
2

N∑

i "=j

ε2

|ri − rj |
(1)

where ε2 = e2/4πε0. ε0 is the dielectric constant. ri is the position of electron i while all
other constants have their traditional meaning.

Density functional theory (Hohenberg and Kohn [23], Kohn and Sham [24], Sham and
Kohn [25]) constitutes the main underlying basis for the solution of this problem.

The theory is founded on the Hohenberg–Kohn theorem [23] which states that the ground
state energy of a many-body system is a unique functional of the one-particle charge density
n(r). The ground state energy can be derived from a variational principle

E[Vext] = min
n(r)

( ∫
d3r Vextn(r) + F [n]

)
(2)

where F [n] is a unique functional of the charge density n(r) independent of the external
potential Vext which can be expressed as [24]

F [n] = T [n] + U [n] + Exc[n]. (3)

Here, T [n] is the functional of the kinetic energy for a set of N non-interacting electrons of
density n(r). U [n] is the classical Hartree energy

U [n] = 1
2

∫
d3r n(r)

∫
d3r ′ n(r′)

ε2

|r − r′|
(4)



Transport properties of dilute alloys 241

and Exc[n] the exchange-correlation energy which includes all many-body interactions,
exchange and correlation, in an effective way. Variation of the ground state energy, under
the assumption of a charge density being a sum over all occupied single-particle states [24]

n(r) = 2
occ∑

k

|ϕk(r)|2 (5)

with the single-particle wavefunctions ϕk(r) for an arbitrary set of quantum numbers k, leads
to the well known Kohn–Sham equations

[
− h̄2

2m
∂2

∂r2
+ V (r)

]
ϕk(r) = Ekϕk(r). (6)

These equations describe the motion of independent particles in an effective potential

V (r) = Vext(r) +
∫
d3r ′ n(r′)

ε2

|r − r′|
+ Vxc(r) (7)

with

Vxc(r) = δExc[n(r)]
δn(r)

, (8)

which is a functional of the single-particle wavefunctions through n(r). Solving these
equations the charge density n(r) and the ground state energy E[n(r)] can be obtained
iteratively.

Physically, the Lagrange parameters Ek , which result from the constraint that the particle
number be conserved, are meaningless here serving simply as a device to solve the underlying
self-consistent problem. Under some special circumstances though [24,26,27], the eigenvalues
and eigenfunctions can be used to approximate the quasi-particle band structures of real
materials.

This set of single-particle Kohn–Sham equations would, in principle, provide the exact
solution to the many-body problem if the functional form of the exchange-correlation potential
were known exactly. Since it is not, approximations such as the local density approximation
have been introduced. For slowly varying charge densities, the ground state energyExc[n] can
be approximated by

Exc[n] ≈
∫
d3r n(r)εhomxc (n(r)), (9)

where εhomxc is the exchange-correlation energy of the system of non-interacting electrons with
charge density n(r). The exchange-correlation potential becomes

Vxc(r) ≈
[
d
dn

(nεxc(n))

]

n=n(r)

. (10)

Since the effective potential is a function of the charge density, the Kohn–Sham equations can
be solved self-consistently until the densities at iterations i and (i + 1) are in agreement.

In the generalization of density functional theory to magnetic systems [27–32], the so-
called spin density functional theory, one distinguishes between two types of electrons, namely
the majority electrons (σ = + or σ =↑) and the minority electrons (σ = − or σ =↓) whose
spin is in and opposite to the direction of magnetization, respectively. The two types of
particles are represented by spin-dependent densities n+(r) and n−(r), leading accordingly to
the following functional for the ground state energy:

E[n+, n−] = T [n] +
∫
d3r Vext(r)n(r) + U [n] + Exc[n+, n−] (11)
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with a total density given by
n(r) = n+(r) + n−(r) (12)

and the magnetization density given by
m(r) = n+(r) − n−(r). (13)

Clearly, the ground state energy is a functional of both spin-dependent densities, E[n+, n−].
Using spin-dependent densities in terms of single-particle wavefunctions

nσ (r) =
∑

k

|ϕσ
k (r)|2, σ = (+, −) (14)

the variation of the ground state energy yields the spin-dependent Kohn–Sham equations
[
− h̄2

2m
∂2

∂r2
+ V σ (r)

]
ϕσ

k (r) = Eσ
k ϕσ

k (r). (15)

and, by analogy with the spin-independent case an effective though spin-dependent potential
follows as

V σ = Vext(r) +
∫
d3r ′ n(r′)

ε2

|r − r′|
+ V σ

xc(r) (16)

with

V σ
xc = δExc

δn±(r)
.

Under local spin density approximation, the exchange-correlation energy [29, 30] writes

Exc[n+, n−] ≈
∫
d3r (n+(r) + n−(r))εhomxc (n+(r), n−(r)) (17)

and

V σ
xc ≈

[
∂

∂n± (n+ + n−)εhomxc (n+, n−)

]

nσ =nσ (r)

. (18)

Different approximations of the local density and the local spin density functional [28–30,33]
have been used. They lead to variations within the error of the local density or spin density
approximation itself.

2.2. The Green function

A variety of techniques can be utilized to solve the Kohn–Sham equations (6) and (15). One
of these is the equivalent formulation in terms of a Green function

(
− h̄2

2m
∂2

∂r2
+ V (r) − E

)
G(r, r′; E) = −δ(r − r′) (19)

and (
− h̄2

2m
∂2

∂r2
+ V σ (r) − E

)
Gσ (r, r′; E) = −δ(r − r′) (20)

for spin-independent and spin-dependent systems, respectively. Not only does the Green
function include the same information on the the electronic states of a translationally invariant
system for a given potential V (r) as the other available techniques, but it is especially
appropriate for the treatment of non-translationally invariant systems such as, for example,
impurity atoms in an otherwise perfect crystal, interfaces or surfaces.

The formulation of the Green functionmethod was introduced by Dupree [14], Beeby [15]
and Holzwarth [16]. It was further developed, refined and applied to real systems by Dederichs
and Zeller [18,19], Terakura [34–36], Oppeneer and Lodder [37,38], Lehmann [17] andMertig
et al [20].
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2.2.1. Muffin-tin approximation. The translationally invariant crystal potential

V (r +Rn) = V (r) (21)

where Rn is a lattice vector, is regarded as a superposition of local potentials of finite
range [39, 40]

V (r) =
∑

n

Vn(r − Rn). (22)

Formetals either spherical non-overlapping potentialsVn, so-calledmuffin-tin spheres, centred
at lattice spaces with a region of constant potential in between or overlapping spheres, so-called
atomic spheres, with no interstitial region between the spheres are chosen. The assumption
of a muffin-tin form for the potential played an essential role for the early development of the
Green function method. During recent years the Green function method was also extended to
full potentials [41, 42]. The calculations have shown that spherical potentials are sufficient in
almost all cases and that the principal source of mistakes for total energy calculations results
from the assumption of spherical charge densities.

2.2.2. The Green function of the unperturbed system. In a spectral representation, the Green
function is expressed in terms of the eigenfunctions ϕσ

k (r) of the Kohn–Sham operator

Gσ (r, r′, E) =
∑

k

ϕσ
k (r)ϕσ

k (r′)∗

E + iε − Eσ
k

ε
→
> 0 (23)

where the poles are the eigenvalues Eσ
k of the Kohn–Sham operator. In view of the Dirac

identity

lim
ε→0

1
E − Ek

σ + iε
= P

1
E − Ek

σ
− iπδ(E − Ek

σ ), (24)

(P stands for the Cauchy principle part) the energy dependent spin density nσ (r, E) can be
related to the imaginary part of the Green function [20]

nσ (r, E) =
∑

k

|ϕσ
k (r)|2δ(E − Eσ

k ) = − 1
π
ImGσ (r, r; E). (25)

The spin density then results from an integration with respect to energy over all occupied states

nσ (r) = − 1
π

∫ EF

−∞
dE ImGσ (r, r; E). (26)

The sum of the spin densities determines the total charge density (equation (12)) whereas the
magnetization density is given by the difference (equation (13)). The spin-dependent density
of states writes

Nσ (E) = − 1
π

∫

Vz

d3r ImGσ (r, r; E) (27)

obtained by an spatial integration over the volume of the elementary cell Vz or in terms of the
equivalent operator notation (27)

Nσ (E) = − 1
π
Im TrGσ (E) (28)

by means of the trace of the Green function with respect to spatial dependence. Thus, the
integrated density of states can be written as [43]

N σ (E) =
∫ E

−∞
dE′ Nσ (E′) = − 1

π
Im Tr lnGσ (E). (29)
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Then, N (EF ) = N +(EF ) +N −(EF ) and M(EF ) = N +(EF ) − N −(EF ) represent the total
number of electrons and the total magnetic moment of the system, respectively.

With the spatial dependence of the Green function expressed in terms of cell-centred
coordinates r → Rn + r and r′ → Rn′ + r′ whereby r and r′ are restricted to the Wigner–
Seitz cell, equation (19) becomes

(
− h̄2

2m
∂2

∂r2
+ V σ

n (r) − E

)
Gσ (Rn + r; Rn′ + r′; E) = −δnn′δ(r − r′). (30)

For Rn "= Rn′ and r "= r′, the source term contained in the right-hand side of equation (30)
vanishes and the Green function satisfies the homogeneous Schrödinger equation. Thus, G
can be expressed in terms of the linearly independent regular and irregular solutions of the
radial Schrödinger equation

Rσ
Ln(r, E) = Rσ

ln(r, E)YL(r̂) and H σ
Ln(r, E) = H σ

ln(r, E)YL(r̂) (31)

with spherical potentialV σ
n (r). YL(r̂) are real spherical harmonics with a shorthand notationL

for angular momentum l and magnetic quantum number m and r̂ = r/r . The Green function
becomes [44]

Gσ (Rn + r, Rn′ + r′; E) = δnn′
2m
h̄2

κ
∑

L

YL(r̂)Rσ
ln(r<, E)H σ

ln(r>, E)YL(r̂′)

+
∑

LL′

YL(r̂)Rσ
ln(r, E)Gnn′σ

LL′ (E)Rσ
l′n′(r

′, E)YL′(r̂′) (32)

with r< = min(r, r ′), r>, = max(r, r ′) and κ =
√
2m
h̄2

E.
The first term of equation (32) is the Green function of a single scattering potential Vn in

free space which results from the source term of equation (30).
The second term, which consists of regular solutions only, satisfies the homogeneous

Schrödinger equation. It should be noted that the so-called structural Green functionGnn′

LL′(E)
σ

accounts for all the multiple scattering processes between the muffin-tin potentials.
In the case of a superposition of identical potentials:

V σ (r) =
∑

n

V̊ σ (Rn + r) (33)

with the linearly independent solutions R̊σ
l (r, E) and H̊ σ

l (r, E) of the radial Schrödinger
equation with potential V̊ σ (r) the Green function of the ideal crystal writes

G̊σ (Rn + r, Rn′ + r′; E) = δnn′
2m
h̄2

κ
∑

L

YL(r̂)R̊σ
l (r<, E)H̊ σ

l (r>, E)YL(r̂′)

+
∑

LL′

R̊σ
L(r, E)G̊nn′σ

LL′ (E)R̊σ
L′(r′, E). (34)

It is worthwhile noticing that because of translational invariance, the structural Green function
G̊nn′σ

LL′ (E) depends onRn − Rn′ only.

2.2.3. The Green function of the perturbed system. The Green function of the perturbed and
the unperturbed system are related by a Dyson equation

Gσ = G̊σ + G̊σ+V σGσ (35)

+V is the change brought about by the defect to the potential

+V σ (r) =
∑

n

+V σ
n (r) =

∑

n

V σ
n (r) − V̊ σ (r). (36)
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The electronic structure of the perturbed system, that is, nσ (r, E), nσ (r), Nσ (E)

(equations (25)–(29)), is entirely known once the Green function of the perturbed system
(equation (35)) is calculated. Consequently, the impurity atom causes the following changes
in spin density

+nσ (r) = − 1
π

∫ EF

−∞
dE Im [Gσ (r, r, E) − G̊σ (r, r; E)], (37)

the density of states

+Nσ (E) = − 1
π

∫

Vz

d3r Im [Gσ (r, r; E) − G̊σ (r, r; E)] (38)

the total number of occupied states

+N (EF ) = +N +(EF ) ++N −(EF ), (39)

the magnetization

+M(EF ) = +N +(EF ) − +N −(EF ) (40)

where

+N σ (EF ) =
∫ EF

−∞
dE [Nσ (E) − N̊σ (E)]. (41)

Equation (35) can be rewritten with respect to cell-centred coordinates as

Gσ (Rn + r, Rn′ + r′; E) = G̊σ (Rn + r, Rn′ + r′; E)

+
∑

n′′

∫
d3r ′′ G̊σ (Rn + r, Rn′′ + r′′; E)+V σ

n′′(r
′′)Gσ (Rn′′ + r′′, Rn′ + r′; E).

(42)

Combining equation (42) with equations (32) and (34) yields an algebraic Dyson equation

Gnnσ

LL′(E) = G̊nn′σ

LL′ (E) +
∑

L′′,n′′

G̊nn′′σ

LL′′ (E)+tn
′′σ

l′′ (E)Gn′′n′σ

L′′L′ (E), (43)

which relates the structural Green function of the defect Gnn′σ

LL′ (E) to that of the ideal host
G̊nn′σ

LL′ (E). It should be noted that, instead of the difference of potentials, equation (43) involves
the difference between single-site transition matrices +tnl [20]

+tn
σ

l (E) = tn
σ

l (E) − t̊σl (E) (44)

with

tn
σ

l (E) = − h̄2

2mκ
sin ηnσ

l (E)eiη
nσ

l (E). (45)

ηnσ

l (E) are the scattering phase shifts of the potential V σ
n .

The rank of the algebraic Dyson equation is determined by the extension of the defect,
that is, the number n of perturbed neighbouring potentials.

2.2.4. Perturbed Bloch waves. The single-particle wavefunction of a translationally invariant
system is a Bloch wave whose angular momentum expansion at the cell centreRn writes

ϕ̊k(Rn + r) = 1√
V

∑

L

c̊n
L(k)R̊σ

L(r, E) (46)
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with k characterizing the electronic state via the set of quantities (k, ν, σ ) where k is the
Bloch vector, ν the band index and σ its spin. The coefficients c̊n

L(k) are a contracted notation
between Bloch factors and expansion coefficients c̊L(k)

c̊n
L(k) = eikRn c̊L(k). (47)

By analogy with equation (46), a perturbed Bloch wave can be defined in terms of radial
eigenfunctions as

ϕk(Rn + r) = 1√
V

∑

L

cn
L(k)Rnσ

L (r, E) (48)

which represents an angular momentum expansion of the wavefunction in the cell centred at
Rn of the perturbed crystal. The perturbedBlochwave is a solution of the so-called Lippmann–
Schwinger equation

ϕk(Rn + r) = ϕ̊k(Rn + r) +
∑

n′

∫
d3r ′ G̊σ (Rn + r, Rn′ + r′, E)+Vn′(r′)ϕk(Rn′ + r′) (49)

obtained by projecting onto ϕk the combination between equations (23) and (35). G̊σ is the
Green function of the ideal system (see also sections 2.2.2 and 2.2.3). With equations (46) and
(48), equation (49) can be expressed as

cn
L(k) = c̊n

L(k) +
∑

n′L′

G̊nn′σ

LL′ (E)+tn
′σ

l′ (E)cn′

L′(k). (50)

The expansion coefficients of the perturbed Bloch wave can be expressed in terms of the
expansion coefficients of the unperturbed Bloch wave

cn
L(k) =

∑

n′L′

Dnn′σ

LL′ (E)c̊n′

L′(k) (51)

where the matrix D writes
Dnn′σ

LL′ (E) = [(1− G̊σ (E)+tσ (E))−1]nn′

LL′ , (52)
which by means of equation (35), can also be expressed in terms of the perturbed Green
function

Dnn′σ

LL′ (E) = [1 +Gσ (E)+tσ (E)]nn′

LL′ . (53)
This representation (equation (53)) will be used in what follows.

2.2.5. The T matrix. Consider the scattering of an unperturbed Bloch wave by a perturbation
+V (equation (36) and figure 1) duringwhich both spin and energy are conserved. This process
can be expressed in terms of the T matrix

Tkk′ = 1
V

∫
d3r ϕ̊k(r)+V σ (r)ϕk′(r) (54)

which, combined with equation (46) and (48), becomes

Tkk′ = 1
V

∑

nL

c̊n∗

L (k)+nσ

l (E)cn
L(k′) (55)

with
+nσ

l (E) = e−2iη̊
σ
l (E)+tn

σ

l (E). (56)
By use of equation (51), T transforms into

Tkk′ = 1
V

∑

nn′LL′

c̊n
L(k)T nn′σ

LL′ (E)c̊n′

L′(k
′), (57)
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,  k’

ε

ε

k

k’

,  k

Figure 1. Scattering of a Bloch wave at a cluster of perturbed potentials.

with

T nn′σ

LL′ = e−2iη̊
σ
l (E)+tn

σ

l (1 +Gnn′σ

LL′ (E)+tn
′σ

l′ (E)). (58)

η̊σ
l are the scattering phase shifts of the unperturbed potential and+tn

σ

l are the differences of the
single-site t matrices of the perturbed and unperturbed potentials (equation (44)). By contrast,
the structural Green function Gnn′σ

LL′ of the perturbed system contains all the information about
multiple scattering processes between the potential spheres. The T matrix will be used in the
following representation

Tkk′ = 1
V

∑

nL

c̊n
L(k)Qn

L(k′) (59)

where the generalized wavefunction coefficientsQn
L(k) write

Qn
L(k) =

∑

n′L′

T nn′σ

LL′ c̊n′

L′(k). (60)

2.2.6. The microscopic transition probability. In the limit of non-interacting scattering
centres, the microscopic transition probability for an electron to scatter from a state k to a
state k′, is given by Fermi’s golden rule

Pkk′ = 2π
h̄

cN |Tkk′ |2δ(Ek − Ek′) (61)

where c is the concentration of defects, cN the number of perturbed atoms in the system. In
fact, the relaxation time

τ−1
k =

∑

k′

Pkk′ (62)

characterizes the scattering processmostmeaningfully for it represents the time that an electron
stays in the state k until the next scattering event. By virtue of the optical theorem

∑

k′

|Tkk′ |2δ(Ek′ − Ek) = − 1
π
Im Tkk (63)

the relaxation time is expressed by the imaginary part of the diagonal elements of T

τ−1
k = −2

h̄
cN Im Tkk. (64)
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Figure 2. Spin-dependent scattering in ferromagnetic systems.

In ferromagnetic systems the scattering probability Pkk′ contains in fact four components
depending upon the spin-quantum numbers before and after scattering (figure 2)

P σσ ′

kk′ =
(

P
↑↑
kk′ P

↑↓
kk′

P
↓↑
kk′ P

↓↓
kk′

)
(65)

thus k now stands only for (k, ν). Although, there are several mechanisms of spin mixing we
restrict our consideration to potential scattering, that is, the diagonal elements of equation (65)
only. The non-diagonal spin mixing elements result principally from the scattering by spin
waves [45] or from collisions between spin-up and spin-down electrons [46], both mechanisms
cease to operate at 0 K. But there are also residual spin-mixing terms. Spin-flip can occur upon
scattering by impurities via spin–orbit coupling, but the corresponding cross section is about
two orders of magnitude smaller than that of the spin-conserving scattering potential [47]. At
0 K spin-mixing can also result from the combined action of the internal magnetic induction
and the spin–orbit coupling. This term is neglected without justification.

The microscopic transition probability can be transformed by means of equation (59) into

Pkk′ = P0δ(Ek − Ek′)
∑

nn′LL′

Qn∗

L (k)Qn′

L′(k)c̊n
L(k′)c̊n′∗

L′ (k′) (66)

with P0 = c(h̄2/2mEF ).

3. Transport theory

This part concentrates on a first principle description of transport properties in the frame
of electronic structure methods. The application of transport theory to dilute alloys will be
presented in a subsequent section.

3.1. Macroscopic transport coefficients

Assuming linear response of the considered system to the influence of any external fields, we
shall always find that the densities of the electrical current j and of the thermal current q are
linear functions of the electric field E and of the temperature gradient along the sample ∇T

j = L̂EEE + L̂ET ∇T , (67)
q = L̂T EE + L̂T T ∇T . (68)

All the generalized transport coefficients L̂ are tensors which reduce to scalars L in case of
cubic systems. The generalized transport coefficients are however not observed directly. They
are combinations of measured transport properties as follows [48].
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Electrical conductivity σ̂ . Given the temperature, an electric current takes place upon
application of an electric field. Under this conditions equation (67) becomes

j = L̂EEE. (69)

Comparison with Ohm’s law

j = σ̂E (70)

leads to

σ̂ = L̂EE, (71)

where σ̂ is the electrical conductivity. The electrical resistivity is given by ρ̂ = σ̂−1.

Thermal conductivity κ̂ . The specimen is electrically insulated to prevent any electric current
flowing through it. A thermal gradient is maintained, and the flux of heat measured. Under
these conditions equations (67) and (68) reduce to

E = −L̂−1
EEL̂ET ∇T , (72)

q = (L̂T T − L̂T EL̂−1
EEL̂ET )∇T . (73)

In view of the empirical relation

q = −κ̂∇T (74)

the thermal conductivity is written

κ̂ = L̂T EL̂−1
EEL̂ET − L̂T T . (75)

What happens is that, in order to stop the flow of electric current, carried by the flux of heat,
an electric field has to build up along the specimen. This field slightly reduces the thermal
current so that the thermal conductivity is not simply the coefficient −L̂T T .

Thermopower S. If instead of the thermal current the electric field caused by a thermal
gradient is measured for the same experimental conditions

E = S∇T (76)

we obtain the absolute thermopower of a metal

S = −L̂−1
EEL̂ET . (77)

Peltier coefficient /. Using the conditions under which the electrical conductivity was
measured there will also be a thermal current associated which is proportional to the electric
field

q = /j. (78)

Combined with equations (67) and (68), equation (78) yields the following expression of the
Peltier coefficient

/ = L̂T EL̂−1
EE. (79)

From these four measurements, the generalized transport coefficients which relate the currents
to the fields (equations (67) and (68)), can be entirely determined.
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Kelvin–Onsager relation. The thermopower and the Peltier coefficient are related by

S = /T (80)

which implies the following dependence of L̂ET upon L̂T E

L̂ET = −L̂T E/T . (81)

Wiedemann–Franz law. As long as the following approximation for the thermal conductivity
holds (see equation (75))

κ ≈ −L̂T T (82)

the thermal conductivity remains proportional to the electrical conductivity

κ ≈ L0σ (83)

where L0 is the Lorentz number.
In case of metals the externally applied electric field amounts to

E ≈ j

σ
∼ 10−2V

m
(84)

while the external magnetic field is in the range

B = 10–100 T. (85)

On the other hand, an order of magnitude for the atomic field is given by

E0 ≈ e

4πε0a
2
0

∼ 1011
V

m
(86)

where a0 is the Bohr radius, while the atomic magnetic field scales with

B0 ≈ E0

vF

∼ h̄

ea0
∼ 105 T, (87)

where vF is a typical Fermi velocity. Hence it should be kept in mind that since external fields
are by several orders of magnitude smaller than the atomic electric and magnetic fields, the
electronic structure of the system is essentially unchanged during the above measurements of
transport coefficients (Landau levels are neglected for the consideration of the conductivity).

3.2. Boltzmann equation

For the description of transport properties of a metallic system from a microscopic level, two
options are in general available. On the one hand, the transport coefficients can be treated
in a fully quantum mechanical manner based on Kubo’s linear response formalism [5], as
exemplified by the ab initio treatments of transport coefficients of disordered alloys [9, 49].
Unfortunately, themethoddoes not allow for a clear understandingof themicroscopic processes
which lay behind the macroscopic transport coefficient.

On the other hand, one may take advantage of the quasi-classical approach of transport
founded on the Boltzmann equation. This description accounts for the microscopic origin
of the transport coefficients very satisfactorily and it is valid every time the mean free path
is simultaneously small relative to the macroscopic dimension of the system and large as
compared to the lattice parameter.

Boltzmann theory assumes the existence of a distribution function fk(r) which measures
the number of carriers in the state k in the neighbourhood of r. This distribution function
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changes through diffusion of charge carriers, under the influence of external fields and due to
scattering, giving rise to a net rate of change

∂fk(r)

∂t

which should vanish in the steady state. The resulting condition is the Boltzmann equation
(

∂fk(r)

∂t

)
+

(
∂fk(r)

∂t

)

diffusion
+

(
∂fk(r)

∂t

)

field
=

(
∂fk(r)

∂t

)

scattering
(88)

where the terms at the left-hand side account for changes of the distribution function due to
an explicit time dependence, due to diffusion and due to the influence of external fields. All
these changes have to be in equilibrium with the changes of the distribution function through
scattering.

We restrict the following considerations to a homogeneous external electric field E.
Equation (88) thus reduces to

e

(
∂f 0k
∂Ek

)
vkE =

(
∂fk

∂t

)

scattering
(89)

where vk is the velocity of the electrons which can be obtained from the single-particle energies
of the considered system

vk = 1
h̄

∂Ek

∂k
. (90)

f 0k is the Fermi–Dirac distribution function

f 0k = 1
e(Ek−EF )/kBT + 1

(91)

at 0 K. kB is Boltzmann’s constant. The local change of charge carriers due to elastic scattering
of independent particles can be related to the microscopic scattering probability by

(
∂fk

∂t

)

scattering
=

∑

k′

[fk′(1− fk)Pk′k − (1− fk′)fkPkk′ ]. (92)

The first term in equation (92) characterizes the scattering of electrons from occupied states
k′ into an unoccupied state k (scattering-in term) while the second term characterizes the
reverse process, the scattering of an electron from an occupied state k into unoccupied states
k′ (scattering-out term). We separate fk into two parts

fk = f 0k + gk, (93)
where the deviations gk from the equilibrium distribution function are assumed to be modest
under a small external electric fieldE. According to the principle of microscopic reversibility

Pkk′ = Pk′k (94)
and in view of equation (93) the ansatz for the local change of charge carriers (equation (92))
simplifies to

(
∂fk

∂t

)

scattering
=

∑

k′

Pkk′(gk′ − gk). (95)

Assuming a linear response for the deviations of the electron distribution function means
gk ∼ |E|, hence we make the ansatz

gk = −e

(
∂f 0k
∂Ek

)
λkE, (96)
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where λk is the vector mean free path. The amount of the vector mean free path is the usual
mean free path known from text books and measures the path of the electron between two
successive scattering events. With equations (95) and (96) the Boltzmann equation (89) can
be transformed into

λk = τk

[
vk +

∑

k′

Pkk′λk′

]
. (97)

τk is the relaxation time for electron impurity scattering introduced by equation (62). In non-
magnetic systems equation (97) is an integral equation from which the vector mean free path
λk (k = (k, ν)) can be determined. In ferromagnetic systems (k = (k, ν, σ )) and in view
of equation (65), the Boltzmann equation becomes a system of coupled integral equations
which decouples if spin-flip scattering processes are ignored. Integration is performed over
the anisotropic Fermi surface of the system under consideration.

The current density is written
j = e

∑

k

fkvk (98)

which is merely the product of charge density and velocity of charge carriers. The crystal
volume is set to unity. Combining equations (93), (96) and (98) and comparing that to Ohm’s
law (equation (70)) yields the conductivity tensor σ̂

σij = e2
∑

k

δ(Ek − EF )vki
λkj

(99)

where the index i and j refer to the components along Cartesian coordinates. If cubic systems
are considered σij = σδij . A factor of two will appear when considering the spin quantum
number explicitly in non-magnetic systems. In ferromagnetic systems, the conductivity is
usually split into spin-dependent contributions

(ρσ )−1ij = σσ
ij = e2

∑

k

δ(Ek − EF )vσ
ki
λσ

kj
(100)

where σ̂ ↑ and σ̂↓ stand for themajority and theminority electrons, respectively and k = (k, ν).
Since the currents are in parallel (figure 3) [50] the total conductivity for cubic systems becomes

σ = σ ↑ + σ ↓ with σ̂ σ
ij = σσ δij , (101)

which can be written equivalently in terms of the resistivities

ρ = ρ↑ρ↓

ρ↑ + ρ↓ with ρ̂σ
ij = ρσ δij . (102)

The spin anisotropy ratio
α = σ ↑/σ ↓ = ρ↓/ρ↑ (103)

is usually introduced to account for the individual contributions of the majority and minority
electrons to the transport properties.

3.2.1. Exact solution. Using the special structure of the microscopic transition probability
(equation (66)) the linearized Boltzmann equation can be transformed into

λσ
k = τσ

k

[
vσ

k + P0
∑

nn′LL′

Qnσ ∗

L (k)Qn′σ
L′ (k)Ξnn′σ

LL′

]
(104)

where the Fermi surface integral writes
Ξnn′σ

LL′ =
∑

k′

δ(Ek − Ek′)c̊nσ
L (k′)c̊n′σ ∗

L′ (k′)λσ
k′ . (105)
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Figure 3. Total resistivity within the two-current model.

The Boltzmann equation (equations (104) and (105)) can, in general, be solved exactly since
the integral kernel is degenerated [51], that is, the transition probability can be separated into
terms that depend on k or on k′.

This idea has been implemented for a strongly localized point defect, that is, n = n′ = 1
and applied for non-magnetic dilute alloys [8]. In the case of a perturbed cluster, an algebraic
set of rank R = (L×L′ ×n×n′)2 has to be solved instead of the integral equation. However,
the exact solution becomes rapidly untractable numerically. For example, angular momenta
up to l = 3 and 13 perturbed atoms in the cluster R = (16 × 16 × 13 × 13)2 ∼= 2 × 109 are
clearly too large for a numerical treatment.

Since the numerical solution of the problem is highly complicated several approximations
have been developed which are discussed in the following.

3.2.2. Iterative solution. Since solving the Boltzmann equation (equations (104) and (105))
proves to be too large for a numerical treatment an iteration schemewas proposed by Coleridge
[52]. It was later implemented by van Ek and Lodder [11] and by Mertig et al [12] for non-
magnetic and magnetic systems, respectively. Several expressions have been tried to serve as
a starting value in the iteration, such as the relaxation time approximation

λσ 0

k = τσ
k vσ

k (106)

or the Ziman approximation

λσZi
k = vσ

k

1∑
k′ δ(Ek − Ek′)(1− vσ

k vσ
k′)P σ

kk′
(107)

and the degenerate kernel solution for the single-site case (see section 3.2.1). In all cases
convergence was achieved without significantly different convergence rates. The mean free
paths utilized were assumed to be converged if for all points on the Fermi surface the largest
relative change in λσ

k between two subsequent iterations, i and (i + 1), was less than 10−5

max
||λσ

k (i + 1) − λσ
k (i)||

||λσ
k (i)||

< 10−5. (108)

This criterion was met within ten iterations for all systems with ρ ! 1 µ2 cm/at%.
Thismethod is nonetheless numerically extremely expensive, especiallywhen the impurity

cluster gets larger or when the Fermi surface becomes complicated. This is why a method
combining iteration and a variational solution of the Boltzmann equation has been developed,
which has greatly reduced the numerical effort as is shown in the next section.

3.2.3. Variational solution. From equations (89) and (95), the Boltzmann equation can be
expressed in an abstract form as [48]

X = Pφ. (109)
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X is a known function which, in practice, depends on the external field via

X = e
(∂f 0k )

∂Ek

vkE (110)

and P is the scattering operator. The problem is to find φ

Pφ =
∑

k′

Pkk′(gk′ − gk). (111)

Let the inner product of two functions be

〈φ, ψ〉 =
∑

k

φ(k)ψ(k). (112)

and note that

〈φ, Pφ〉 = 〈φ, X〉. (113)

The scattering operator is obviously linear, symmetric (see also equation (94)) and positive
definite, because it is a measure of a probability. Hence

〈φ, Pφ〉 ! 0 (114)

holds. The variational principle states that, of all functions which satisfy this condition (113),
the solution of the integral equation is thatwhich gives the quantity 〈φ, Pφ〉 itsmaximumvalue.
Several equivalent formulations are available for this theorem. For example, the solution of
the integral equation will give the expression

〈φ, Pφ〉
{〈φ, X〉}2

(115)

its minimum value, which coincides with the electrical resistivity in terms of the variational
function [48]. Thus, the electrical resistivity is the extremal value of equation (115). If, instead
of φ, we make use of the vector mean free path λk equation (113) can be transformed into

〈λ, Pλ〉 = 〈λ, v〉. (116)

Introducing the following trial function

λtrialk =
N∑

i=1
λiλi

k, (117)

which is constructed on the solutions λi
k = λk(i) of the first N iterations (section 3.2.2),

equation (116) becomes
∑

i

λivi =
∑

ij

λiλjP ij (118)

where

vi = 〈λi , v〉 and P ij = 〈λi , Pλj 〉 (119)

are Fermi surface integrals. The variational principle then implies that the parametersλi should
satisfy the algebraic set N2 equations

vi =
∑

j

P ijλj . (120)

Since the trial functions are chosen to be strongly adapted to the problem, we are able to
construct variational solutions. The numerical effort to get the variational solution is equivalent
to the (N + 1)th iteration.
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3.2.4. Relaxation time approximation. Because it is difficult to solve the linearized
Boltzmann equation (equation (97)) numerically, several approximations have been introduced.
In fact, the vector mean free path λk and the velocity vk depend on each other via a tensorial
relation which expresses the fact that, upon scattering, an electron can change direction and
amount of its velocity. It should be noted that in relaxation time approximation, the scattering-
in terms—here the second terms of the right-hand side of equation (97)—are ignored. We then
obtain

λk = τkvk. (121)

Clearly, the scattering process is nomore fully taken into account since the analysis is restricted
to scattering in direction of the velocity.

Thenext easiest approximation consists in neglecting the state dependenceof the relaxation
time. A Fermi surface average

λk = 〈τk〉vk (122)

is substituted to τk , with the average defined as

〈τk〉 =
∑

k δ(Ek − EF )τk∑
k δ(Ek − EF )

. (123)

What occurs under this approximation is that the electrons are assumed to undergo the
same scattering in all states k. If the conductivity of free electrons is calculated under the
approximation (equation (122)) the expression

σ = ne2τ

m
(124)

is obtained. This is a standard result which is currently applied to all metallic systems without
any consideration of the anisotropy of electronic structure.

The accuracy of the different approximations strongly depends upon the anisotropy of
scattering. When the inversion symmetry of the Bravais lattice is not affected by the defect,
the microscopic scattering probability obeys the following symmetry relation

Pkk′ = P−k−k′ (125)

which in turn implies

λ−k′ = −λk′ . (126)

Obviously, the scattering-in term can be transformed into
∑

k′

Pkk′λk′ =
∑

k′

1
2 (Pkk′λk′ + Pk−k′λ−k′)

=
∑

k′

1
2 (Pkk′ − Pk−k′)λk′ (127)

and is determined by the anti-symmetric part of the scattering operator

P a
kk′ = 1

2 (Pkk′ − Pk−k′). (128)

The lifetime, however, is related to the symmetric part of this operator

P s
kk′ = 1

2 (Pkk′ + Pk−k′). (129)

The relaxation time approximation is sufficient as long as the scattering probability for
scattering from k into k′ is equal to that from k into −k′ (figure 4), which is fulfilled for
isotropic scattering. The approximation is however invalid in situations of strongly anisotropic
scattering, as is the case of pronounced forward or backward scattering.
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Figure 4. Symmetry of scattering probabilities.

3.2.5. Single-site approximation. Another common approximation for the solution of the
Boltzmann equation is the so-called single-site approximation. Within this approximation
all backscattering contributions from the crystalline environment of the scattering centre are
neglected in the transition matrix (equations (55) and (58)). The resulting scattering matrix is
the so-called single-site transition matrix

tkk′ = 1
V

∑

nn′LL′

c̊n∗

L (k)+nσ

l (E)c̊n
L(k′) (130)

which enters the microscopic transition probability (equation (61)).

4. Residual resistivity

Concerning the transport properties, resistivity is one of the most fundamental properties of
a metallic system. If the resistivity is investigated at extremely low temperatures the so-
called residual resistivity is obtained. Residual resistivity is a fingerprint of a metallic system.
Consequently, a large variety of highly precise experimental data exists.

The origin of residual resistivity in crystalline systems are lattice imperfections, as
impurities and interstitials, dislocations, stacking faults and grain boundaries or chemical
disorder in substitutional alloys. The theoretical investigations presented in the following
section will give a detailed review of the microscopic origin of residual resistivity in dilute
alloys.

4.1. Computational details

The ab initio treatment of transport properties is based on a highly sophisticated calculation
of the electronic structure of dilute alloys. The computational methods to investigate the
electronic structure of dilute alloys starting from density functional theory using the Green
function technique (see section 3) have been refined over the last decade. The success of
this development is characterized by an interplay of new methodical techniques and computer
power. This section is a short summary of numerical details of the calculations.

A basic ingredient of all the calculations are the self-consistent potentials of the host
material which are taken fromMoruzzi et al [30]. The bandstructure was calculated by means
of the so-called KKR (Korringa, Kohn and Rostoker) method [53, 54]. Within the KKR
equations an angular momentum truncation at lmax = 4 was used.

The imaginary part of the structural Green function was generated within the same KKR
method by means of a Brillouin zone integration using the tetrahedron method [55, 56]. The
real part of the Green functionwas calculated by aHilbert transformation [56] with a truncation
energy of 2.0 Ryd.
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Figure 5. Topology of a Cu Fermi surface (see http://www.phy.tu-dresden.de/∼fermisur).

The self-consistent impurity calculations are performed within the frame of density
functional theory [23, 24] using the local spin-density approximation as proposed by von
Barth and Hedin [29] with parameters as chosen by Moruzzi et al [30]. To obtain the Green
function of the perturbed system the algebraic Dyson equation is solved. The dimension of
this equation is made finite by truncating the angular momentum expansion at l = 3 and by
assuming potential perturbations only at the impurity site and at the first shells of atoms around
the impurity.

The necessary Fermi surface integrations were performed with a modified tetrahedron
method [20, 57].

4.2. Non-magnetic systems

The formalism of an ab initio calculation of residual resistivity was first applied to dilute noble
metal alloys. For these systems a large variety of highly precise experimental data has already
existed for a long time. General trends with respect to the impurity atom, like Linde’s rule or
the period effect, have been observed for sp defects in noble metals. The transport properties
of transition metal impurities in noble metal hosts have been elucidated by the concept of
resonance scattering at a virtual bound state.

4.2.1. Electronic structure of noble metals. Now, if we want to understand the microscopic
processes behind the general trends for the residual resistivities we should concentrate our
attention on the electronic states at the Fermi level since they determine the conductivity
(equation (99)). The anisotropic electronic properties are the source of specific differences
between the metallic systems whereby the Fermi surface acts as visiting card.

The electronic structure of noble metals is characterized by a fully occupied d band with
strong hybridization between s and d states. This behaviour is reflected in the Fermi surface
topology which is no longer a simple free electron sphere but exhibits characteristic necks
(figure 5). Besides the Fermi surface topology Fermi velocities are an important input to
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Figure 6. Anisotropic velocity at the Fermi surface of Cu (see http://www.phy.tu-
dresden.de/∼fermisur). Minimal velocity 0.72 au (blue areas), maximal velocity 1.26 au (red
areas).

determine the conductivity (99)). In particular, the velocity is no longer isotropic as in a free
electronmodel. The amount of the Fermi velocity is strongly anisotropic and varies over awide
range. For Cu as a representative of noble metals the Fermi velocity varies by 50% (figure 6)
which is in agreement with experimental data [58, 59]. States with large Fermi velocity (red
areas) give a large contribution to the conductivity. The blue areas around the necks are low
velocity states. According to equation (90) the amount of the velocity is a measure of the
curvature of the band. High velocities result from wide bands whereas low velocities result
from narrow bands. The bandwidth, on the other hand, is related to the character of Bloch
states.

Using the angular momentum expansion for the Bloch waves (equation (46)) the states
can be analysed in terms of angular momenta. Since the Bloch functions are normalized the
expansion coefficients fulfil the following condition:

∑

L

|c̊L(k)|2 = 1. (131)

Although, the electronic states are band stateswhich cannot clearly be classified by the quantum
number L the square of the expansion coefficients is a measure of the dominating character.
In figure 7 the character of states over a Cu Fermi surface is illustrated. The distribution of
s, p and d states in Cu is representative for all noble metals. The dominating L character,
that is |c̊L(k)|2 0 1 is visualized by yellow areas at the Fermi surface whereas blue areas
correspond to |c̊L(k)|2 0 0 and indicate a lack of considered angular momentum. Green areas
mark |c̊L(k)|2 0 0.5. The changing colours are related to a continuous transition of |c̊L(k)2|
between 0 and 1. Obviously, and in contradiction to the common level of understanding
states with s character are rare at a noble metal Fermi surface. Remainders are located at the
nearly spherical parts of the Fermi surface (figure 7(a)). p states are more pronounced and
can be obtained around the van Hove singularities in (100) direction and around the necks
(figure 7(b)). All states except states around the van Hove singularities in (100) direction are
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 (a) 

 (b) 

 (c) 

Figure 7. Character of Bloch states at the Fermi surface of Cu (see
http://www.phy.tu-dresden.de/∼fermisur): (a) s character, (b) p character and
(c) d character. The characters change continuously from 0 via 0.5 to 1 which
is related to a colour scale of blue via green to yellow.

more than 50% d like (figure 7(c)). In the next section we will demonstrate that the character
of the wavefunction is extremely important for the understanding of scattering rates.

4.2.2. Impurities in noble metals and residual resistivity. Besides the important influence of
the electronic structure of the hostmaterial the residual resistivity changes stronglywith the type
of scatterer. Transition metal impurities, for example, cause a maximum of residual resistivity
nearly in the middle of the transition metal series (figure 8) whereas a proportionality to the
square of the valance difference+Z between host and impurity is obtained for sp impurities, the
so-called Linde’s rule (figure 9). Another effect related to sp impurities is known as the period
effect. The residual resistivity due to impurities with equal +Z decreases with increasing
atomic number. Empirical models have been introduced to explain the several trends. It will
be shown that ab initio calculations allow us to understand these trends from a microscopic
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Figure 8. Residual resistivity for 3d transition metal impurities in Cu [8]. Closed circles are
theoretical results in comparison with experimental results (triangles) [1].

Figure 9. Residual resistivity for sp impurities in Ag [69]. Calculated values (closed circles) in
comparison with experimental results (open circles) [1].

level.
By introducing 3d impurities into a noble metal host, the localized 3d level of the impurity

atom is, due to the interactionwith the conduction electrons, broadened into a resonance, called
a virtual bound state after Friedel [60,61]. Friedel’s assumptions have been confirmed by self-
consistent electronic structure calculations [19] (figure 10). The analysis of local densities of
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Figure 10. Local densities of states for Ni and Co impurities in Cu together with the host density
of states (dotted curve) [19].

states at the impurity site shows clearly that the virtual bound state for an impurity atom at the
beginning of the transition metal series is unoccupied and lies far above the Fermi energy [19].
With increasing atomic number, that is, increasing 3d occupation number of the defect the
virtual bound state moves from above to below the Fermi energy.

A qualitative explanation of the trend of the resistivity (figure 8) was given by the Friedel–
Anderson model [61,62]. The scattering strength is related to the position of the virtual bound
state relatively to the Fermi energy. If the virtual bound state is near to the Fermi energy, that
appears nearly in the middle of the 3d series, resonance scattering is obtained which leads
to large resistivity values. This general trend is reflected in nearly all transport properties
as, for example, the residual resistivity of dilute Al [63], Cu [8, 11, 64] and Ag alloys [65],
magnetoresistivity and Hall coefficient [66].

Linde’s rule can easily be explained. The potential perturbation caused by sp impurities
is proportional to the effective charge difference e+Z. Consequently, the scattering cross
section of the sp impurities is proportional to the square of e+Z. This picture was qualitatively
discussed by calculations within the free electron model (equation (124)) [67,68] and justified
by ab initio calculations [69].

The period effect means that for sp defects with equal+Z the residual resistivity decreases
with increasing atomic number of the defect, that is, the residual resistivity due to defects of
the fourth row is larger than that due to defects of the fifth row. This effect is related to the
larger impurity radius for higher atomic numbers. The larger impurity radius causes as well
as stronger 4d–3d and 5d–3d hybridization, much larger 3d–3d hybridization giving rise to
broader impurity states and reduced scattering cross sections.

All these general trends have been confirmed by ab initio calculations. Figures 8 [8]
and 9 [69] show that theoretical and experimental results are in general agreement. Since
the results stem from a calculation using the exact solution of the Boltzmann equation (see
section 4.2.1) [8] the differences are connected to the restriction of the impurity charge to a
single site.

It should be mentioned, furthermore, that the experimental data for dilute Cu(3d) alloys
stem from low temperature experiments (T = 0 K). Otherwise, we would not obtain the
maximum for Cu(Cr). The considered systems are known to show the Kondo effect which
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                       (a) 

 (b) 

Figure 11. Relaxation time (equation (62)) of (a) Cu(Ni)
(minimum 0.0002 au, maximum 0.0004 au) and (b) Cu(As)
(minimum 0.003 au, maximum 0.009 au) dilute alloys.
Continuous change from minimal (blue) via medium (green) to
maximal (yellow) relaxation times.

is related to a magnetic moment at the impurity site. Consequently, the resistivity is strongly
influenced. The resulting effects are related to many body interactions of the electron gas with
the impurity atom which are not treated correctly within this theory and will be excluded from
this review.

Since ab initio calculations do not parametrize the considered properties but describe
them at an microscopic level we get detailed information about the underlying processes. For
example, the question can be answered which electronic states at the Fermi level contribute
to transport? The answer in our last section was that high velocity states are important for
conductivity. In this section the interaction with the impurity is discussed.

The easiest way to characterize scattering is by means of the relaxation time. Large
relaxation time means weak scattering (yellow areas in figure 11) and large contribution
to conductivity, low resistivity. Electrons within states of small relaxation time undergo a
strong scattering (blue areas in figure 10) and will give a small contribution to conduction.
The distribution of relaxation times over the Fermi surface is shown for a Ni impurity as
a representative of a d scatterer (figure 11(a)) and for a As impurity, a typical sp scatterer
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Table 1. Comparison of exact solution (I—equation (97)) and relaxation time approximations
(II—equation (121) and III—equation (122)) of the Boltzmann equation.

ρ in µ2 cm/at%

System I II III

Cu(Ni) 1.41 1.61 1.61
Cu(As) 4.96 7.60 7.41

(figure 11(b)). The figures demonstrate first of all that the anisotropy of the scattering rate
depends strongly on the type of scattering potential and can vary by an order of magnitude over
the Fermi surface. Furthermore, the type of impurity potential determines which states are
influenced by scattering. A Ni defect with impurity d states causes strong scattering of Bloch
electrons with d character (see blue areas in figure 11(a) in comparison to figure 7(c)) which
is already known from the investigation of magnetic-field-induced surface states [70–72]. The
opposite behaviour is obtained for Cu(As) (see figure 11(b)). The impurity levels are sp like
consequently the Bloch electrons with sp character undergo strong scattering (figures 7(a) and
(b)).

To summarize, conduction is an interplay of pure bandstructure and scattering. Electrons
with large velocity are of course designated for carrying the current. But this is strongly
influenced by the scattering properties of the impurity potential. This tendency can be amplified
or reversed by the relaxation time and the scattering-in term (equation (97)).

The scattering-in term contributes to the amount of the vector mean free path. Generally,
" increases up to 10% in comparison to τv for transition metal impurities and up to 50% for sp
impurities. This discussion is also reflected in table 1 where a comparison of the full solution
(equation (97)) and the relaxation time approximations (equations (121), (122)) is presented.
The relaxation time approximation works well for transition metal defects in Cu whereas for
sp defects in Cu the results of the relaxation time approximation can be wrong by a factor of
two. This is, of course, related to the relaxation times (figure 11). Transition metal impurities
in noble metals cause a more isotropic scattering than sp impurities since the d states are more
equally distributed over the Fermi surface than the sp states.

4.3. Ferromagnetic systems

The transport properties of ferromagnetic dilute alloys have been intensively investigated about
20 years ago. These experimental results revive since the discovery of giant magnetoresistance
inmagneticmultilayers [73,74]. Theyprovide a goodbasis to understand the newphenomenon.

Theoretical explanations of the experiments have been given using Mott’s two current
model. Following Mott’s idea [50] several transport properties of ferromagnetic alloys (see
figure 3) can be explained by assuming conduction in parallel by electrons in themajority bands
(spin-up electrons) and by electrons in the minority bands (spin-down electrons). The physical
basis of this two current model is the dominance of spin-conserving potential scattering and the
weakness of spin-flip collisions in a ferromagnetic alloy at low temperatures (see discussion
in section 2.2.6). It seems that the model provides a good basis for the discussion of a wide
range of alloy properties [75]. Owing to the developments of density-functional theory and
sophisticated numerical techniques we are now able to perform realistic ab initio calculations
which puts us in position to check the reliability of the above-mentioned model studies and to
elucidate the undergoing microscopic processes. Theoretical studies of ferromagnetic dilute
alloys performedwithin the Green functionmethod [56,76–80] presented a detailed analysis of
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 (a)  (b) 

 (c)  (d) 

Figure 12. Fermi surface of bcc Fe (see http://www.phy.tu-dresden.de/∼fermisur). Majority sheet:
(a) h↑

5 , (b) e
↑
6 . Minority sheet: (c) e

↓
3 , (d) e

↓
4 .

the range of charge andmagnetization perturbations around the impurities. The extension of the
formalism to transport properties of dilute Fe, Co and Ni alloys was given in [12, 21, 81–83].
To review the data and demonstrate the peculiarities of transport in ferromagnetic systems
results of dilute Fe, Co and Ni alloys are summarized in this chapter.

4.3.1. Fermi surfaces. In magnetic systems the spin degeneracy of the energy eigenvalues
is lifted, states are exchange split. Consequently, the systems have a magnetic moment
(equation (29)) which is 2.2µB/atom for Fe, 1.6µB/atom for Co and 0.6µB/atom for Ni. The
majority band of the ferromagnets is occupied except for bcc Fe. For Fe the Fermi energy
cuts off the upper shoulder from the d states so that about 0.2–0.3 d states are not occupied
(see figure 15). For fcc Co (figure 16) and Ni (figure 17) the Fermi energy lies above the
majority d band. The minority-spin density of states is characterized by the fact that the Fermi
energy falls into the minority d band. From Fe to Ni the number of occupied minority d states
increases thus the magnetic moment decreases.

This behaviour is also reflected in the Fermi surfaces. Indeed, the Fermi surfaces of Fe
(figure 12), Co (figure 13) and Ni (figure 14) are multisheeted and reflect the lattice structure.
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 (a)  (b) 

 (c)  (d) 

Figure 13. Fermi surface of fcc Co (see http://www.phy.tu-dresden.de/∼fermisur). Majority sheet:
(a) e↑

6 . Minority sheets: (b) h
↓
3 , (c) e

↓
4 , (d) e

↓
5 .

We distinguish the Fermi surfaces of the majority electrons (yellow) and minority ones (blue).
Since the majority d band in Co (figure 13) and Ni (figure 14) is occupied the Fermi surface
consists of one sheet that is very similar to the Cu Fermi surface and less inflated since one
electron ismissed. In Fe, however, twomajority sheets are obtained (figure 12) since the d band
is not fully occupied. The minority Fermi surface consists of many electron and hole sheets
due to the partially filled d band (shown in figures 12–14). The third, fourth and fifth minority
band of Co and Ni are directly related to each other and reflect the increasing occupation of
d states going from Co to Ni. Generally, the nearly occupied bands that give rise to hole
pockets (figures 13(b), 14(b) and (c)) around the (100) points of the Brillouin zone are less
important for conduction. In contrast, the large electron-like ones contribute considerably to
conductivity.

The illustration of the calculated Fermi velocity distribution and the character of the
electronic states would be too expensive and space consuming within this review. But they are
presented the same way as discussed for Cu (section 4.2)†. Summing up these properties, it

† see web page http://www.phy.tu-dresden.de/∼fermisur.
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 (a) 

 (b)  (c) 

 (d)  (e) 

Figure 14. Fermi surface of fcc Ni (see http://www.phy.tu-dresden.de/∼fermisur). Majority sheet:
(a) e↑

6 . Minority sheets: (b) h
↓
3 , (c) h

↓
4 , (d) e

↓
5 , (e) e

↓
6 .

may be said that the distributions of Fermi velocity and character of states are as complicated
as the topology of the Fermi surface itself, i.e. they reflect details of the electronic structure in
the same way as was discussed for Cu and that both distributions are far from being isotropic.

4.3.2. Impurities in ferromagnetic systems. A key to understanding the scattering properties
of an impurity atom is the local density of states, that is, the change of the electronic structure
at the defect site (see also equation (37)). Compared with the results of a noble metal host
(see section 4.2.2) the situation is a little more complicated since the defect acts differently in
both spin bands. The resulting local densities of states in the impurity Wigner–Seitz spheres
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Figure 15. Local densities of states of 3d impurities in Fe for both spin directions (see [42]). The
figure denoted Fe in Fe represents the density of states of pure Fe.

for ferromagnetic dilute alloys are shown in figure 15 for Fe(3d), in figure 16 for Co(3d) and
figure 17 for Ni(3d), respectively. It should be mentioned that the calculations have been
performed including the charge relaxation at the next nearest neighbour sites. The important
changes concerning transport, however, occur at the impurity site. The results for both spin
directions are plotted with the energies given relative to the Fermi energy. The host density
of states is also given as a reference system (denoted as Fe in Fe, Co in Co and Ni in Ni).
These results are chosen from a variety of systems [56,76–80] to discuss the general trends of
microscopic processes and to review the data with respect to the magnetic multilayers showing
interlayer exchange coupling [84] and giant magnetoresistance [85,86]. The actual electronic
structure of the perturbed system is determined by the valence difference and by the difference
in themagneticmoments between host and impurity atom. As a consequence spectral weight is
moved and impurity virtual bound states are formed either in the majority or/andminority band
at a characteristic energy. Analysing these results the following general trends are obtained.

• Impurities with +Z " |2| produce nearly no change in the majority band. The charge
adjustment is achieved by the minority band alone.

• Impurities with +Z < −2 produce a virtual bound state in the majority band at EF or
an empty virtual bound state above EF . The population of the minority states does not
change very much any more.

• For impurities with +Z > 2 we obtain the tendency that both spin bands are more and
more filled up to accommodate the additional charge.
As a consequence of the changed electronic structure the magnetic moments at the defect

sites are varied (equation (40)). Using the above discussed formalism the impurity moments
can be calculated with high accuracy. A comparison of theoretical and experimental impurity
moments is given in [42] for Fe(3d), in [80] for Co(3d) and in [77] for Ni(3d).
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Figure 16. Local densities of states of 3d impurities in Co for both spin directions (see [80]). The
figure denoted Co in Co represents the density of states of pure Co. Mn is shown for both magnetic
configurations.
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Figure 17. Local densities of states of 3d impurities in Ni for both spin directions (see [56]). The
figure denoted Fe in Fe represents the density of states of pure Fe.

Concerning the scattering cross sections of impurity atoms in ferromagnetic hosts the
changes of the local density of states at the Fermi energy are important. In general, the
resonance concept discussed for noble metal hosts yields for each spin-band separately. Strong
scattering in one spin channel is obtained if the impurity virtual bound state lies at the Fermi
level or if spectral weight is moved to or removed from the Fermi energy with respect to the
unperturbed system.

4.3.3. Residual resistivity and spin anisotropy ratios. The results for the residual resistivities
of 3d impurities in the ferromagnets Fe, Co and Ni are shown in figures 18(a)–20(a),
respectively, in comparison to experimental results. Taking into consideration, first, that the
calculations are done without any free parameter and second, that the obtained experimental
results scatter over a wide range, the agreement is surprisingly good and demonstrates the
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Figure 18. (a) Calculated residual resistivities for 3d impurities in Fe in comparison to experimental
data in µ2 cm/at%, a: [88], b: [89, 90]. (b) Sub-band resistivities ρ↑ (full line) and ρ↓ (broken
line) in µ2 cm/at%.

reliability of the ab initio calculations.
The trends of the residual resistivities for the different ferromagnetic hosts with 3d

transitionmetal impurities can be understood bymeans of a sub-band decomposition according
to Mott’s two current model which is shown in figures 18(b)–20(b). The trends of the spin
channels, ρ↑ and ρ↓, reflect the scattering properties which have been discussed in the last
section. For example, resonance scattering is the origin of the high resistivity values in the
majority band for Fe(Mn), Co(Mn) and Ni(Cr). Since the majority Fermi surface of Co and
Ni is noble metal-like ρ↑ increases according to Linde’s rule for systems with +Z " |2|.

The total resistivity is, of course, determinedby the low resistivity channel. This proportion
changes sensitively as a function of valance difference between host and impurity atom and
is described by the spin-anisotropy ratio α given in equation (103). Experimentally, this
information cannot be obtained from the resistivities since the components of the resistivity
tensor are scalars. The anisotropy values can only be deduced if the measurements are done
with respect to a reference system, for example, in ternary alloys [75]. The meaning of the
anisotropy ratios is illustrated schematically in figure 21. α 1 1 means that the minority
electrons determine the total resistivity since they are only weakly scattered by the defect and
form a fast, highly conducting channel. α 2 1 is opposite. Now the majority electrons are
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Figure19. (a)Calculated residual resistivities for 3d impurities inCo in comparison to experimental
data in µ2 cm/at%, a: [91], b: [92]. (b) Sub-band resistivities ρ↑ and ρ↓ in µ2 cm/at%.

faster and determine the total resistivity. The calculated and measured anisotropy ratios are
given in tables 2–4. The agreement is again very good and the calculated values are reliable
and can be used as prediction except for systems with the valance difference between host and
impurity atom+Z " |2|. These are the so-called short circuit systems. The electronic structure
of themajority band is not influenced by these defects, though, the calculated resistivity is going
to be zero for this band and produces a short circuit. This behaviour is, of course, an artifact
of the non-relativistic calculation. Spin–orbit coupling and, consequently, spin-flip scattering
are neglected although they are important in these systems. Although, the spin-flip scattering
contribution is small it would change the resistivity of the majority band from zero to a finite
value and the short circuit effect disappears. A fully relativistic ab initio treatment overcomes
this problem [87].

The anisotropy ratios have been introduced to explain the residual resistivities of
ferromagnetic dilute alloys [75].

Furthermore, in some cases 1/αtheor is in better agreement than αtheor. It might be within
the experimental error since all values are near to 1.

Finally it should bementioned again that the anisotropy ratios are still very useful nowadays
to understand the resistivities and giant magnetoresistance in magnetic multilayers [73],



272 I Mertig

Figure 20. (a) Calculated residual resistivities for 3d and 4sp impurities in Ni in comparison to
experimental data in µ2 cm/at%, a: [89], b: [88], c: [93], d: [93], e: [94], f: [95], g: [96], h: [97],
i: [98], j: [92], k: [99], l: [100] m: [101]. (b) Sub-band resistivities ρ↑ (full curve) and ρ↓ (broken
curve) in µ2 cm/at%.

Figure 21. Spin anisotropy of impurity scattering: (a) α 1 1 and (b) α 2 1.

especially the so-called inverse giant magnetoresistance [85, 86]. The spin-anisotropy ratios
act as data base to tailor new multilayers with defined properties.

5. Conclusion

An ab initio method to calculate the transport properties of dilute alloys was presented and
reviewed. Themethod is based on density functional theory using aGreen function formulation
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Table 2. Anisotropy ratios α = ρ↓/ρ↑ of dilute Fe alloys.

Impurity αtheor (1/αtheor) αexp

Sc 0.65 — —
Ti 0.19 — 0.25a, 0.66b

V 0.13 — 0.12a, 0.13b

Cr 0.17 — 0.17a, 0.37b

Mn 0.03 — 0.09a, 0.17b

Co 0.77 1.30 1.0a, 3.7b

Ni 5.48 — 3.0a, 7.0b

Y 1.50 — —
Zr 0.88 — —
Nb 0.61 — —
Mo 0.61 — 0.21b

Tc 0.51 — —
Ru 0.58 — 0.38b

Rh 5.59 — 5.8b

Pd 11.61 — —
Cu 8.20 — —
Zn 6.87 — —
Ga 5.87 — —
Ag 12.22 — —
Cd 7.69 — —

a [88].
b [89, 90].

Table 3. Anisotropy ratios α = ρ↓/ρ↑ of dilute Fe alloys.

Impurity αtheor (1/αtheor) αexp

Sc 5.94 — —
Ti 3.44 — 1.4b

V 1.1 — 1.0b

Cr 0.35 — 0.3b

Mnaf 1.49 0.67 0.8b

Mnf 1.54 0.64 0.8b

Fe 57.66 — 12a

Ni 522.41 — —
Cu 139.35 — —
Y 3.22 — —
Zr 2.50 — 3.3b

Nb 1.51 — 1.0b

Mo 0.68 — 0.7b

Tc 0.20 — —
Ru 0.05 — 0.22a

Rh 0.94 1.06 1.0b

Pd 299.07 — —
Ag 205.55 — —

a [91].
b [92].

to determine the electronic structure of the dilute alloy. To obtain the transport properties
without any free parameter theBoltzmann equationwas solved taking the anisotropic electronic
structure and the anisotropic impurity scattering matrix elements into consideration.
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Table 4. Anisotropy ratios α = ρ↓/ρ↑ of dilute Ni alloys.

Impurity αtheor (1/αtheor) αexp

Sc 0.97 — —
Ti 0.85 1.17 1.1a, 4b, 2.7d

V 0.53 — 0.45a, 0.55b, 2.3d

Cr 0.30 — 0.5a, 0.45b, 0.4c, 0.21d, 0.2f , 0.4g

Mn 2.42 — 8.9a, 15b, 5.4d

Fe — — 11a, 20b, 7.3d

Co 92.4 — 13a, 30.5b, 20c, 13d, 20f , 20g

Y 0.60 — —
Zr 0.64 1.56 7.5e

Nb 0.54 — 0.44e, 0.47i

Mo 0.31 — 0.28e, 0.37i

Tc 0.11 — —
Ru 0.17 — 0.29a, 0.15e

Rh 0.77 — 0.65a, 0.17e, 0.29i

Pd 0.19 — 1d

Cu 250.0 — 2.9a, 3.7d

Zn 24.0 — 2.2a

Ga — — 1.7g

Ge 1.82 — 1g

As 0.71 — —
Ag 24.0 — —
Cd 15.2 — —
In 0.51 1.96 1.5h

Sn 0.24 — 1.6a, 1.35h

Sb — — 0.8h

a [89],
b [88].
c [102].
d [103].
e [104].
f [99].
g [98].
h [100].
i [92].

The high quality of the method was demonstrated by reviewing a wide range of data. The
results confirm phenomenological models, extend the potential to explain details and trends
of the experimental data and increase our knowledge about microscopic processes behind the
macroscopic transport properties. The accuracy of the method opens the opportunity for a
future theoretical material design.
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