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People want search results to reflect exactly what they 

meant, all that they meant, and only what they meant, and 

they want it quickly. 

•There are gaps….
– Gap between what the user wants (information need) and the query that 

the user formulates

– Gap between what the document represents and indexes that the IR 

engine built

Research Problems



Research Goals

• The purpose of the project is three-fold: 

1. Incorporating inference of user preferences 

in Query Expansion

2. Capturing meanings embedded in documents

3. Ranking search results with context-

enriched features

Our approach: QEQIC

Our approach: Concept Extraction

Our approach: Learning to Rank and Dynamic Clustering



QIC System Architecture



• Two different types of data: 

1. Ohsumed – biomedical data collection for proof-of-

concept at the initial development phase.

2. Ensemble Pathway – computing sciences data 

collections at http://www.computingportal.org/collections

jOAI, an OAI harvesting tool built in Ncore was used to 

crawl Ensemble. 

Note: The size of data is small. This may influence the 

overall performance of our approach.

Data Collection

http://www.computingportal.org/collections


• Query is initially represented as a tuple of {context, 

named entities}.

– Named entities detected using Boosted Dictionary-based Entity 

Spotter (BDES). 

– A concept tuple consists of {Computing concept, description, class}.

• Computing concepts provided by “The Free On-line Dictionary 

of Computing” (http://foldoc.org/).

• Class assigned to a concept manually based on ACM 

Classification

Query Expansion: QEQIC

http://foldoc.org/


• Dictionary-based approach: tackles the problem of  

lack of contextual cues but: 

– too many false recognitions

– takes too long to look up the dictionary entry.

• Our approach resolves these issues by: 

– Approximate String Distance Algorithm to retrieve 

candidate entries

– Shortest-path Distance Algorithm

– Part-Of-Speech (POS) tag

– Syntactical properties of terms

Boosted Dictionary-based Entity Spotter



• Sentence:
Demonstrate the algorithm for simultaneously finding the 

minimum and maximum values in an array

– Concept:

Algorithm

– Class:

Theory of Computation

– Description:

Model of computation and algorithm 

Concept Tuple Example



• Incorporate Static User Preference data into 

query expansion

– Subject terms stored in user profile are matched with 

titles of data set in the Latent Semantic Index (LSI) 

space. 

– N top terms relevant to subject terms in the user profile 

are compared with a query. 

• If there is a good match (based on string similarity between a 

top term and query terms), the terms are weighted higher. 

QEQIC: static user profile data



QEQIC: Semantic Query Expansion Algorithm

QEQIC Data Flow



Genia Geinia+MeSH Genia+MeSH+

UMLS

Precision 0.93 0.878 0.88

Recall 0.573 0.72 0.68

BDES

BDES without POS/syntactic properties
Genia Geinia+MeSH Genia+MeSH+

UMLS

Precision 0.76 0.56 0.51

Recall 0.62 0.82 0.78

Preliminary Results of BDES



• Probabilistic Combinatorial Markov Random 

Fields (PCMRF): 

– A supervised learning technique

– PCMRF is a non-generative graph model. 

• Training data:

– 5000 sentences from Ensemble Pathway and other 

computing sciences related digital libraries.

• These 5000 sentences are positive examples (meaning 

containing concepts in the sentence).

• Combined with 5000 more sentences (negative examples), 

we build a concept extraction model.

Concept Extraction



• RESTful Web Services for Concept Extraction

Concept Extraction

http://localhost:8080/qic/Tagger?tag=“Testing internet tagging service”
<tagging>

<token>
<name>Testing</name>
<class>O</class>

</token>
<token>

<name>internet</name>
<class>Web</class>

</token>
<token>

<name>tagging</name>
<class>O</class>

</token>
<token>

<name>service</name>
<class>O</class>

</token>
</tagging>



• Clustering approach: 

– Based on a supervised learning technique -

Probabilistic Combinatorial Markov Random Fields 

(PCMRF) technique 

• Same as our concept extraction technique

– Requires a small set of initial training examples. 

– For performance reasons, input for clustering is a set 

of concepts extracted from Ensemble and stored in a 

database.

Dynamic Clustering of Search Results



• Learning to rank – apply supervised learning techniques 

to rank search results. 

• Proposed technique: Mixture Support Vector Machines 

– Combines multiple models

• Models are built with a set of features (attributes) such as TF-IDF, no. 

of clicks, the user‟s research interest, etc.

• There are several different ways to select features:

1) Document-driven model [11,15], 

2) Meta data-driven model [14], 

3) User static context-driven model, and 

4) User search behavior-driven model [13]

Note: The current model is based on document-related features.

Rank search results with context features



• The most popular approach in learning to rank. 

– Training data is part of the LETOR package [11]  
http://research.microsoft.com/en-us/um/beijing/projects/letor/default.aspx

– 25 features were extracted 

• 10 from title, 10 from abstract, and 5 from „title + abstract‟

• TF, TF*IDF, BM25, Language Model ranking scores, IDF, etc

– For query id “1” and document id “40626”, the label is 

“2” (definitely relevant).

2 qid:1 1:3.00000000 2:2.07944154 3:0.27272727 … 

25:-3.87512000 #docid = 40626 

Document-driven Model

http://research.microsoft.com/en-us/um/beijing/projects/letor/default.aspx
http://research.microsoft.com/en-us/um/beijing/projects/letor/default.aspx
http://research.microsoft.com/en-us/um/beijing/projects/letor/default.aspx


• Incorporate users‟ search behavior into ranking the 

results [13].

1 - category;  2 - qid; 3 - search; 4 - abstract_text; 5 - full_text; 6 -

no_visits; 7 - no_returned_citation; 8 - pos_clicked_citation; 9 -

search_duration

0 qid:1 1:0.0 2:1.0 3:0.0 4:1 5:0 6:0 7:0.016944444

0 qid:1 1:0.0 2:2.0 3:0.0 4:2 5:0 6:1 7:4.2805557

1 qid:1 1:1.0 2:4.0 3:0.0 4:5 5:11583 6:10 7:106.29944

2 qid:1 1:8.0 2:8.0 3:11.0 4:27 5:2194 6:33 7:314.75027

0 qid:1 1:0.0 2:1.0 3:0.0 4:1 5:0 6:0 7:17.611666

0 qid:1 1:0.0 2:1.0 3:0.0 4:1 5:0 6:0 7:13.123055

1 qid:1 1:2.0 2:0.0 3:0.0 4:2 5:0 6:0 7:20.195278
Sample training data based on search behavior

Search Behavior-driven Model



• Preliminary Results with Ohsumed Data for Query 

Expansion

– A set of 348,566 references from MEDLINE consisting of titles 

and/or abstracts from 270 medical journals over a five-year 

period (1987-1991). 

– Popular data set to apply supervised learning techniques to IR

– Contains the 106 queries in test set, with patient and topic 

information, in the format:

.I Sequential identifier

.B Patient information

.W Information request

– For the preliminary test, we used 12 out of 106 queries.

Evaluation



• The Approach

– Use Recall and Interpolated Average Precision to 

measure the performance.

– Investigate whether QEQIC performs better than the 

baseline Language Model technique.

– Investigate whether adding concepts, semantic types, 

and context terms to QE improves the performance. 

Evaluation



QEQIC 

(title only)

baseline LM 

(title only)

QEQIC 

(title+abstract)

baseline LM 

(title+abstract)

Inter. Avg. 

Precision 0.135 0.108 0.172 0.139

Avg. 

Recall 0.359 0.256 0.407 0.323

Measure by Recall and Interpolated Average Precision

Preliminary Results



QEQIC+CON QEQIC+CON+SEM QEQIC+CON+SEM+

CXT

Avg. Precision 0.137 0.107 0.107

Avg. Recall 0.359 0.321 0.321

CON: Concept

SEM: Semantic Type

CXT: Context Term

Measure by Recall and Interpolated Average Precision

Preliminary Results

• Impact with different feature sets



• Conclusions
– We developed a semantic query expansion technique, and 

tested it on a biomedical data collections.

– We developed a new ranking technique for the search results 

with the “Learning to Rank” approach. 

– We developed a concept extraction technique and a dynamic 

clustering technique with Probabilistic Combinatorial Markov 

Random Fields.

– We developed RESTful APIs for our techniques.

• Future Work
– We plan to conduct a pilot study and the main experiment on 

Ensemble Pathway data

Conclusions and Future Work
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