Creating Research Opportunities for Biology and Environmental Courses Using Online Data

Colleen McLinn, Ph.D. mclinn@cornell.edu

Goals of Talk

- Describe biology curriculum and faculty professional development project (CCLI Type 2)
- Update on outreach and usage of previous NSDL projects (Macaulay Library, Science Pipes)
- Seek advice on effective NSDL integration
- Identify partners and collaborators

Online Research in Biology Staff

- PI:
 - Nancy Trautmann
- Co-PIs:
 - Colleen McLinn
 - Mike Webster
 - Irby Lovette
 - David Winkler
- Web Programmer:
 - Heng-Scheng Chuang
- Undergraduate Intern:
 - Ileana Betancourt

The Problem

 Undergraduate research experiences can have a big impact

...but typically only small numbers of students benefit from them

Goals of the Project

- Use rich online databases to engage students in investigating authentic questions
- Through inquiry-based instructional design, bring the teaching of science closer to the practice of science
- Create manageable student research opportunities in large introductory courses, classes with no lab or field component, and online-only courses

Opportunities of Online Data

- Enhance field studies, by
 - using online datasets to set the scene for student fieldwork
 - viewing field data
 within broader
 temporal and
 geographic trends

Databases and Tools

- Macaulay Library
 - Online access
 - 100,000 animal sounds
 - 40,000 videos online
 - Sound visualization software
- Citizen science data
 - eBird
 - > 21 million observations
 - Project FeederWatch
 - NestWatch
 - Celebrate Urban Birds

Science Pipes

Educational Uses of Science Pipes

Courtney Wilson,
Nancy Trautmann,
Jim MaKinster,
Barbara Barker

The Science Teacher,
77(7), 34-39
October 2010

Approach

- Gathering information
 - Interview faculty about needs
 - Review AOU survey of ornithology courses
 - Collect syllabi (ESA Syllabus Exchange)
 - Review textbooks for fit
 - Review existing lessons
 - Sit in on lectures/labs
 - Workshop

Workshop: Get Your Students Twittering Social Networking in Ornithology Classes

Margaret Rubega, U Conn

Found Canada geese have different strategies for guarding nests with chicks or eggs that haven't yet hatched. Chicks=silence, eggs=noise.12:54 PM Apr 27th

Holden Caulfield once asked where the ducks go in the winter and never really got his answer. He should walk by Mirror Lake at Uconn today 2:13 PM Feb 10th

Teaching Observation and Inference Through Online Photo Tagging

Margaret Voss and Caren Cooper

American Biology Teacher, 72(7), 437-443. September 2010

Outcomes of Workshop

- List of 60 names
- 4 PowerPoint presentations on web
- Blogged about by postdoc in attendance
- List of books, articles, other resources
- Notice about grant and opportunity to participate

"Congratulations on the very successful workshop on teaching ornithology. I look forward to hearing more about the website. I hope you have plans to publicize both the event and the web resources. There is a lot of innovative teaching in the traditional 'ologies, and it should be celebrated and supported."

Advisory Board and Pilot Faculty

Topics

- What is a species?
- Why is one sex more elaborately ornamented than the other in some species?
- Have changes in land use altered bird species abundance or distribution?

Curriculum Development Approach

- Consult with subject matter experts and resource providers about possible educational uses
- Consult with faculty advisors about needs
- Collaborations with lecturers
- Graduate seminar on teaching professional development

Graduate Seminar Details

- 1 credit and 1 hour a week
- Guest presenters, short readings
- Presented lighting talks to Community College faculty member
- Presented draft versions to class for peer review
- Final event invited faculty from Cornell, Ithaca College, Tompkins Cortland Community College
- Refined and edited lessons for website launch

Outcomes of Graduate Seminar

"I really appreciated the combination of theory (of good teaching) and practice (piloting the lessons). I noticed the participants really used the theory in developing their lessons."

Two Modes of Implementation

- One-time labs as part of curriculum (guided inquiry)
- Longer-term independent or pair investigations (open inquiry)

Guided Inquiry Examples

Species Concepts

Owls in Trees

Part 1: Learn how to use the Macaulay Library and to interpret a spectrogram view of sound

Part 2: Analyze owl calls, identify vocal characters, build a tree based on that data

Part 3: Repeat for owl images/natural history information. Compare trees based on behavioral data to trees based on DNA

Part 4: Develop hypotheses about how other bird vocalizations relate to evolutionary history, and test these via independent research using Macaulay Library

	Character 1	Character 2	Character 3	Character 4	Character 5	Sum
Outgroup	0	0	0	0	0	0
Taxon A	1	1	0	1	0	3
Taxon B	1	0	0	0	0	1
Taxon C	1	1	0	1	1	4

Open Inquiry: Science Pipes

- Tool for easy and userfriendly scientific workflows and graphs
- Filter by species, year
- Make graphs without Excel or data entry!
- Tutorials available

http://sciencepipes.org

http://birds.cornell.edu/orb

Usage Tracking

Automated Survey Prompts

The Cornell Lab of Ornithology

Why You Used This Investigation	-	7		THE RESERVE	ALC: UK	
	10000000	TOTAL STREET	CONTRACTOR OF THE	SECTION S	22.00	10000

2/7	
47.5	

1. What student learning outcomes did you hope to achieve with the "Species Concepts in Birds" assignment?

(Rate how important each student learning outcome was to you, from low to high importance. Then, please list any additional learning outcomes you hoped to achieve).

	Low importance	Medium importance	High importance
Knowledge of specific science concepts that you had identified in advance	J	J	J
Knowledge of science content more generally	J.	J	0
Science process skills such as ability to articulate a research question, develop a walld investigation, and accurately analyze and interpret the data	J	J	J
Awareness of the variety of data sources and media types used in scientific research	J	J	J
Awareness of the growing role of the Internet in scientific collaboration, data sharing, and research	J	J	J
Other learning outcomes:			
	(Benjace) (Bay		

Evaluation: In Progress

- Faculty Satisfaction:
 - Satisfaction among participating faculty?
 - Extent and depth of use?
 - Surveys, Quantitative Indicators, server logs and web metrics

Evaluation: In Progress

- Student Research:
 - Degree of open-endedness?
 - Evidence of valid, accurate, defensible research?
 - Pre/post student surveys, review of artifacts, develop rubrics for assessment of inquiry by faculty

Evaluation: In Progress

- Program Success
 - Extent of dissemination?
 - Empower broad range of faculty?
 - Successfully facilitated student research projects?
 - Engaging underserved audiences?
 - Program model lessons learned?

Conding	Dubrio	for	Assessing	Chudant	Inquier	Designate
Chadine	RUDITIC	101	ASSUSSING	Student	mounty	Projects

Scientific Conceptualization	Missing (0 Points)	Beginning (1 Point)	Developing (2 Points)	Proficient (3 Points)	Points
Define a scientific problem in biology or environmental conservation	Not defined	Defined improperly	Defined partially accurately	Defined accurately	
Formulate a statement of purpose and/or scientific question	Missing	Unclear	Partially clear	Clear	
3. Formulate a testable hypothesis and propose explanation(s)	Missing	Hypothesis present, incoherent explanations	Hypothesis present, partially coherent explanations	Testable hypothesis and coherent explanations	
Demonstrate logical connections between scientific concepts guiding question and research design	Not demonstrated	Improper connections	Partial connections	Logical connections	

Online Assessment Tools

Current Collaborations

- Cyberlearning at Community Colleges (C3)
 - First line of feedback
 from undergraduates
 - Discuss pedagogical strategies
 - Disseminate online and in person

Consumers.	Excellent 4	Good 3	Satisfactory 2	Pour 1
Clarity of directions	Directions are very clear and easy to fallow	Directions can be followed with minimal difficulty	Directions are possible to follow but could use more clarity	Directions are not easy to follow and startly in severely lacking
Goal	The lossen has a specific goal it alons to actions	The lesson implies a goal but could be more direct	The lower hims at a goal or has multiple conflicting goals	The lower does not have a clear goal
Encourages student collaboration	The lesson musurages maximum student collaboration	The lesson encourages some student collaboration	The lesson implies student collaboration but it is not specified	The lesson does not promote student collaboration
Use of sedime resources	The leasen uses a specific online contacte(s) to domonstrate a specific concept(s)	The lesson uses an online resource(s) but its role in the lesson could be more pourrisess.	The lesses uses an online resource minimally	The lesson does not use an ording necessary or only uses one supplimentally
Allows students to explore a resource	The lesson gives necessary published but allows students to explore on their own and do their own research	The leasen gives more guidance but implies that exidents can also do more exploring on their own	The leasen does not allow much opportunity for students to explicit a measure on their own	The lesson minimally uses an online resource or does not allow madems to explore on their own
Student thicking	The losson stucturages students to think about a concept in a very non-traditional way	The leaves uses both traditional and non- traditional ways of thinking	The losses uses both traditional and non- traditional ways of thinking	The losses allows students to think about a concept to a maditional way

Desired NSDL Collaborations

- Dissemination and Outreach
 - Pedagogic Services, EcoEd DL, others
- Research
 - Undergraduate faculty and student surveys and case studies
- Technical Advice
- Grant partners
 - Drupal small grants sounds good to me!
- Please contact us!

Future Research Goals

- Faculty surveys and interviews on desired student learning outcomes from working with data
 - Understandings about science content, process
 - Abilities and skills
 - Attitudes
 - Motivation
 - Careers
- Review of existing tools for assessing inquiry
- Develop, validate, disseminate new instruments

Online Research in Biology site: http://birds.cornell.edu/orb

Thank you!