NSDL OAI Server basics, including how to configure an instance of the server

Last updated October 6, 2003 – ND

The OAI Server is java code and some configuration files that get packaged together into a WAR file. Java servlet engines, such as Apache’s tomcat, use the WAR file to properly map URLs to the appropriate java servlet code.

In order to maximize portability of the code (for different instances of tomcat, and/or for other java servlet engines), the code accesses the configuration files via relative addresses. Due to the way tomcat (or something else) works, the addresses are relative to the DIRECTORY FROM WHICH THE JAVA SERVLET ENGINE IS RUN (i.e. the directory from which the “startup.sh” command is run for tomcat). For this reason, whenever restarting the tomcat server, you MUST be in the /usr/tomcat directory (the parent of the (tomcat)/bin directory) for the OAI server code to work properly.

Steps to configure an instance of the NSDL OAI server code

Ensure the configuration information is correct.

Ensure the html files are correct.

Rebuild the .war file, using the “make_(xx)_war.bat” file.

Test the new .war file.

If a version of the WAR file exists in the tomcat instance

stop tomcat (from parent of (tomcat)/bin, ./bin/shutdown.sh)

remove the directory created by tomcat for the .war file(named the same as the war file) from tomcat/webapps. It’s important that the corresponding directory be removed – you may need to fiddle with permissions to do it.

replace the specific .war file in tomcat/webapps with the new one.

Restart tomcat (from parent of (tomcat)/bin, ./bin/startup.sh)

If the WAR file does not exist in the tomcat instance:

Put the new .war file into the tomcat/webapps directory.

Check all the verbs to ensure that the server works properly. An easy way to do this is to run a NSDL validation check on the OAI server. You can also use the html forms, or perform various queries directly.

Put the new .war file into its true home (see 4a or 4b, above).

Configuration information is in the following places

WEB-INF/web.xml

This file is part of the WAR standard to indicate URL to java servlet mappings and initialization parameters. For the OAI server, web.xml indicates “/OAI” is to be tacked on the end of the WAR file name for URLs, and it also indicates the main servlet class, the “targetClass” for the database back end, and the config file to be used.

In general, the only thing needing changing is the relative address of the config file to be used – it has the WAR file name in it, and each instance of the OAI server is a separate war file. In fact, it is this value in the WAR file that requires a particular directory for tomcat restarts.

The other values in this file should not need changing unless class names change or we don’t use an Oracle database or something along those lines.

WEB-INF/nsdloaiConfig.xml

This file has all of the configuration information for an instance of the OAI server: JDBC connection information, view/table names for retrieving the metadata, and information to go in the OAI Identify response.

In general, you will need to change:

connection url

connection userid

connection password

repository name (it’s helpful to indicate the name of the WAR file in the name)

GetRecord table-name

ListRecords table-name

ListIdentifiers table-name

ListSets table-name

ListMetadataFormats table-name

ListMetadataFormats MDFormatsByItem table-name

In order to kept track of all the different configurations, I have created a separate version of each of the two above files for each instance of the OAI server code, and I have put these versions, labeled appropriately, into CVS. Therefore, for existing configurations, it is only necessary to get the relevant versions of the above files from the CVS repository, and rename them to the generic names (“web.xml” and “nsdloaiConfig.xml”) before rebuilding the WAR file. Obviously, if the configurations change, the corresponding files need to change in CVS. In CVS, I usually have the generic names correspond to the “nsdloai” instance values.

HTML files

For testing and for the convenience of non-facile OAI users, there are HTML forms to create OAI requests included in the .war file. These html files are at the top level of the WAR file, at the same level as the WEB-INF directory. Note that these HTML files are not part of the OAI protocol, and are not required. It is believed that the UMass folks use these forms, and perhaps some of the Cornell folks as well.

Because the war file name is in the URLs for OAI requests, these HTML files have the war file name in them.. So for new instances of the OAI server, a new version of these HTML should files must be created, and all of the form action attributes must be changed to have the correct war file name in them.

In order to kept track of all the different configurations, I have created a separate version of each html file for each instance of the OAI server code, and I have put these versions, labeled appropriately, into CVS. Therefore, for existing configurations, it is only necessary to get the relevant versions of the html files from the CVS repository, and rename them to the generic names (“index.html” “getRecord.html” etc.) before rebuilding the WAR file. Obviously, if the war file name changes or is new, the corresponding files need to change in CVS. In CVS, I usually have the generic names correspond to the “nsdloai” instance values.

Building WAR files

After you make changes to the configuration files, you’ll need to rebuild the war file with the new pieces in it. There is a .bat file (“make_(xx)_war.bat”) in CVS for each of the OAI server instances; executing this .bat file from windows should create the proper WAR file.

Tips for using Eclipse for OAI server maintenance

Since the OAI server code is written using java servlets, you’ll want a plug-in for Eclipse to handle java servlets. I use the Sysdeo Tomcat Launcher. See

http://www.sysdeo.com/eclipse/tomcatPlugin.html

I create separate Eclipse tomcat projects for each instance of the OAI server. (Note that with the plug in, you can create a “tomcat” project, which is a type of java project.) Generally, I first create the project will all of the files from CVS, then remove all the irrelevant files (irrelevant versions of config files, html files, make_(xx)_war.bat and war files).

In order for the code to compile, you must have

java servlet (servlet.jar)

xerces (xercesImpl.jar, xmlParserAPIs.jar)

in your classpath.

The servlet jars should be in your class path after you indicate it’s a tomcat projects. The xerces jars are in WEB-INF/lib; you can indicate them in your Eclipse project as external jars in the java build path libraries.

