Metadata Ingest from OAI harvesting to dbinsert file:

0. Collection is ready for harvesting

a. Collection’s OAI server passes OAI validation;

b. Collection’s XML metadata passes XML schema validation).

c. We have a collection record in the MR for it (must be done before step 9)

d. We have the correct naming authority in the aggregation_info table for the collection record.

e. We have a brand for the collection (if there is one, we need it before step 20), and it is correctly entered into the aggregation_info table for the collection record.

f. Collection is entered on the InterimIngestTracker spreadsheet.

1. Initial harvest for evaluation

a. How? (by hand – do what? See step 4.)

b. 500-1000 records desired.

i. If this is the entire collection, or the entire collection is close to this number, then skip to step 5.

2. Xform initial harvest to .csv format.

a. OAI 1.1 vs OAI 2.0; oai_dc1.1 vs. oai_dc2.0

b. Use stylesheets in “content/xmlfiles/tools” to do this.

i. Stylesheets: there’s an outer stylesheet and an inner included stylesheet. You’ll need to check and make sure the transform worked the way you hoped. See OAI1.1_oai_dc_crsdToCSV.xsl and elementsAndAttributes.xsl … both were edited last 11-29-02 and work with Xalan.

1. OAI1.1_oai_dc_crsdToCSV.xsl

2. OAI2.0_oai_dc_crsdToCSV.xsl

3. OAI1.1_oai_dc2.0_crsdToCSV.xsl

4. OAI1.1_nsdl_dc_crsdToCSV.xsl

5. OAI2.0_nsdl_dc_crsdToCSV.xsl

6. (currently one for darwincore in tropicos directory)

7. elementsAndAttributes.xsl (inner included stylesheet)

ii. copy relevant stylesheets to collection directory

iii. Use linux scripts to run these stylesheets on services/home/naomi/ingest/xxx. – create a new linux script for the current collection.

3. Diane evaluates.

a. Diane may have Olin do an evaluation of the metadata before she works on it.

b. Diane may suggest that the collection redo its metadata.

i. After they’ve fixed their metadata, proceed back to step 1 or on to Step 4 after receiving notification of the fix … per Diane’s wishes.

c. Diane may prepare an xform spec.

4. Full harvest of the collection

a. Currently using Simeon’s perl oai harvester on Simeon’s box ice.cs.cornell.edu.

i. Results are gzipped files of ListRecords chunks (in this context, a chunk is a single HTTP response to a ListRecords request – OAI allows the ListRecords requests to be broken into manageable pieces with resumption tokens.)

b. Future: switch to java harvester. Either “Harvie” by Simeon’s MENG student, or a customization of Harvie.

5. If resumptionTokens were used, combine the HTTP responses into bigger ListRecords responses.

a. perl script “combineListRecords.pl” on content in the xmlfiles directory.

i. “perl combineListRecords.pl fname1 … fnamelast >outputfile”

ii. eventually, the “real” OAI harvester will do this for us, I think.
b. Largest pieces we can xform are about 15,000 records with a lot of text.

c. “responseDate” in these responses ??should be the same for all pieces for a collection??

6. Run xform to get .csv format.

a. See step 2.

7. Before writing xform to db_insert (part A):

a. Need xform spec.

b. We must have the nsdl_unique_id for the collection record (e.g. nsdl.nsdl:00231)

8. Before writing xform to db_insert (part B):

a. Use spotfire to check for anomalies in the data

i. Using a table visualization, set elements to radio buttons. Select each element, and sort by value. Scroll through all the values for each element , looking for the range of values and anomalies such as incorrect values. (incorrect MIME types, incorrect URLs, etc.)

b. Think of questions that spotfire can answer, such as:

i. Will every identifier need a URI? (use scatter graph)

ii. Will there be a DCMIType for every item?

9. Create a test file to use while preparing xform

a. Copy a chunk of the full harvest file so you get the headers in the OAI ListRecords response exactly as they should be.

b. Reduce the test file to 3-8 records.

c. Ensure you have all the data you need – add them into the test records by hand if necessary

i. Element/value combinations you need to transform

ii. Element/value combinations you need to remove

iii. Element/value combinations you need to pass through

10. Write the xform according to the spec.

a. Is native metadata oai_dc1.1 or oai_dc2.0? If one of these, use the “samplex.x_to_dbinsert.xsl in content\xmlfiles\tools\ as a starting point.

i. all the variables are together: the collRecID, the oai-identifier prefix, etc. Check the test file to ensure you’ll get the correct output in the dbinsert file.

ii. The particular xform part of the file is down below between the nsdl_dc tags.

1. Use module stylesheets in content\xmlfiles\tools for adding usual encoding schemes, etc. Sometimes you’ll need to do something special (only apply encoding scheme in certain circumstances). If it’s not clear how to do this, look over other collection xforms to see if there’s a model.

iii. If you need to write special code with a lot of cases or complex computation, split it into a separate stylesheet to be included.

b. if it’s oai_dc2.0 served via OAI1.1, use dlese or AVC as a starting point.

11. Xform the test file in exactly the way you’ll xform the full file (i.e. if you’ll use a script in windows, use a script in windows; if you’ll use a script in linux, use a script in linux; if you’ll do it within XMLSpy, then do it within XMLSpy).

a. It is highly recommended that you configure XMLSpy to use Xalan for transforms (but it will still be the internal XSLT engine in debug mode). http://people.sd.polyu.edu.hk/~99902961r/cgp/programming/notes_schemas_1.html
b. There are scripts on services in /home/naomi/ingest/(coll) that run Xalan for csv transforms … these could be easily adapted to run xform to db_insert.

c. There are windows scripts in /content/xmlfiles/tools. See “blah2dbi.bat”

12. Thoroughly check the xformed test file

a. Does it schema validate?

i. Use Xerces. There is a windows script “runSaxCtr22.bat” in content/xmlfiles. (This is for Xerces 2.2.0; runSaxCtr.bat is for Xerces 2.0.1) You’ll need to provide the filename to be validated as an argument.

1. future: port this script to linux on the services box.

ii. Native_oai_dc1.1 will have errors because the oai_dc namespace maps to the same URI as the dc namespace we use for nsdl_dc.

iii. We have had two valid URLs give anyURI errors in Xerces. Possibly due to an underscore in the part between “http://” and the next “/”.

b. Check at least 2 records element by element to ensure that no native fields have been incorrectly dropped, and no nsdl_dc fields have been incorrectly added.

c. Db_insert header:

i. CollRecID

ii. harvestDate

iii. harvestType

iv. harvestDataSource

v. sourceMetadataNamespace

vi. native metadataPrefix

d. Db_insert record before metadata:

i. reharvestID and fullReharvestID

ii. Are the native record dates okay?

iii. Are the primary identifiers okay in the db_insert file?

e. nsdl_dc:

i. Check that everything in the specification is being done properly.

ii. Is there DCMIType encoding scheme in all appropriate places? (dc:type of those values)

iii. Is there URI encoding scheme in all appropriate places? (dc:identifier especially)

f. Native metadata:

i. Is the namespace prefix correct? Does it match native_metadataPrefix in db_insert header?

ii. Is the schema location correct?

iii. Does each element appear exactly as it appeared in the source XML? (We’re not concerned with whitespace between elements, but we are concerned with whitespace within elements, and probably even with element order.)

g. If it doesn’t pass all of the above perfectly, modify the xform – return to step 10.

13. Xform full harvest to db_insert, after ensuring the xform is correct for the test file.

14. schema validate the db_insert file or files.

a. See 12A.

b. Largest pieces we can validate are about 15,000 records with a lot of text.

c. This will also check if the XML is well-formed.

d. Native_oai_dc1.1 will have errors because the oai_dc namespace maps to the same URI as the dc namespace we use for nsdl_dc.

e. We have had two valid URLs give anyURI errors in Xerces. Possibly due to an underscore in the part between “http://” and the next “/”.

15. check UTF8 encoding

a. perl script “checkUTF8.pl” in content /xmlfiles. This will indicated if contents look like UTF8, or if not, it will make corrections to a similarly named file in the same place. To run: “perl checkUTF8.pl fname”

16. check for double XML character entity encoding (e.g. “&amp;”)

a. perl script “doubleEncodingXXX” in content / xmlfiles. This will create a new copy of the file, which then needs to be compared with “diff.” If the results are the same, there is NO double encoding in the file. If there is double encoding in the file, the diff will have results. To fix, there are postprocessing stylesheets in the content/xmlfiles/tools directory.

17. Run xform on db_insert file to get .csv format.

a. (See step 11) Use Xalan.

i. Modify a windows batch file in content/xmlfiles/tools. (blah2dbi.bat)

ii. Future: need to create linux script to run on services.

iii. Uses DBInsertItemsToCSV.xsl and elementsAndAttributes.xsl stylesheets.

b. NOTE: this is slow. Work with Jeni Tennison to optimize.

18. Use spotfire to make sure you have correctly followed the spec, and that the results have no anomalies in the data

a. Using a table visualization, set elements to radio buttons. Select each element, and sort by value. Scroll through all the values for each element , looking for the range of values and anomalies such as incorrect values. (incorrect MIME types, incorrect URLs, etc.)

b. Are encoding schemes assigned in every case they should be, and in no cases where they shouldn’t be?

i. Is there DCMIType encoding scheme in all appropriate places? (dc:type of those values)

ii. Is there URI encoding scheme in all appropriate places? (dc:identifier especially)

c. Are element refinements used in every case they should be, and in no cases they shouldn’t be?

d. check that everything in the specification is being done properly.

e. Think of questions that spotfire can answer, such as:

i. Does every identifier have a URI? (use scatter graph)

ii. Is there a DCMIType for every item? (should there be?)

iii. Is there an identifier for every item? (should there be?)

f. If all is perfect, go on to 19. If not, return to step 10, or talk to Diane to determine if we can ignore the problem.

19. Before passing db_insert file to Tim for ingest into the MR

a. The collection record’s information in the aggregation_info table must be correct:

i. Naming authority

ii. brand

1. Do we have a brand image?

2. Is it correctly stored on content\brands as (blah).gif, (blah).jpeg or (blah).png? (convention: filename same as naming authority)

3. Is this filename, including the extension, properly stored in the agg_info table?

20. Notify Tim that the dbinsert file is ready. (Tracker? Watched folder? Email to reposList?)

21. (Tim ingests)

22. Data validation – see other document

NOTES: Update the interimIngestTracker spreadsheet for most every step.

