The NSDL Repository and API

January 9, 2007

Contents

1 Basic Data Model
1.1 Object Types o oo i i
1.2 Object Content
1.3 Object Identity

2 Core API
2.1 APIBasics
2.1.1 POST and GET requests
2.1.2 XML Parameters
2.2 Creation e
2.2.1 addResource
2.2.2 addMetadatao
2.2.3 addAggregator
2.2.4 addMetadataProvider
225 addAgent
2.3 Reads e
231 get ..o
232 find
24 Updates
2.4.1 modifyResource oo
2.4.2 modifyMetadata L.
2.4.3 modifyAggregator
2.4.4 modifyMetadataProvider
24.5 modifyAgent
2.5 Deletes. e
2.5.1 delete

3 Authentication and Security
3.1 Usersand Agents o
3.2 Authentication oo
3.2.1 The Canonical Header
3.2.2 Header Signature L.
323 PublicKeys

3.3 Rules for Authorized Actions 18

3.3.1 Authorized Agents oL 19

3.3.2 Trusted Applications 19

3.33 Content Rules 19

3.3.4 Relationship Rules 20

3.3.5 Application of Rules 21

A Core Object Components 22
A1l Properties 22
A2 Datastreams. 22
A3 Relationships L 23

B Extended API 23
B.1 countMembers 23
B.2 describe 24
B.3 findMetadata 24
B.4 findResource 24
B.5 findAgento 25
B.6 listMembers 25

C Header Canonicalization 25

1 Basic Data Model

For the purpose of understanding and using the NSDL Repository API, it is
important to understand the basic data model of the repository. This section
is intended to provide a brief overview of the model, oriented towards poten-
tial users of the API. For a more complete and theoretical discussion of the
model, please refer to the JCDL ‘05 paper An Information Network Owverlay
Architecture for the NSDL on this topic.'

The NSDL Data Repository (NDR) is based on the Fedora digital object
repository architecture (http://fedora.info). As such, it is a collection of
digital objects that may contain data such as RDF relationships, XML, images,
etc. The NDR provides a content model and API methods for representing and
manipulating data in these base digital objects.

The NDR content model defines five classes of objects (Resource, Metadata,
Aggregator, MetadataProvider, and Agent), and three types of data that may
be present in each object (Properties, Datastreams, and Relationships). Taken
as a whole, the objects and their constituent relationships form a graph of
interrelated objects. Figure 1 shows the different classes of objects in the NDR
and the relationships that form the basis of this graph

! Available online at http://arxiv.org/abs/cs.DL/0501080

1.1 Object Types

Each class of object in the NDR represents a distinct concept or entity:

Resource objects are the fundamental information units of the NDR, analo-
gous to books, journal articles, videos, etc. in a physical library. They
may contain digital content, such as HTML, XML, or binary data, or
point to a location that contains it. Resources form the backbone of the
NSDL data model, and all other objects in the NDR serve to enhance or
otherwise enrich understanding or enhance the discoverability and re-use
of Resources.

Metadata objects contain information (e.g. bibliographic) about an NDR, Re-
source or aggregation of resources. Metadata objects contain one or more
data streams to support all the representations (formats) of the meta-
data made available by the NDR. Metadata objects are roughly analogous
to items in the Open Archives Initiative Protocol for Metadata Harvest-
ing (OAI-PMH).? When the NSDL harvests metadata from an OAI data
provider, for example, each OAI item represented in the harvest corre-
sponds to a Metadata object in the NDR.

Aggregator objects represent a grouping of Resources, Agents, or other Ag-
gregators. These groupings are intended to have a (possibly application-
specific) meaning, such as a defining a collection of of resources in the
library, someone’s favorite physics resources, or a grouping of like-minded
people (Agents).

MetadataProvider objects are used to signify a grouping metadata that comes
from a particular source. They differ from Aggregators in that a Metadat-
aProviders only define groupings of Metadata (and not other object types
such as Resources), and that every Metadata object must be grouped by
exactly one MetadataProvider. In this sense, the provenance of any Meta-
data object in the NDR may be determined by its MetadataProvider.

Agent objects represent an institution, individual, group, or other entity pro-
viding information to the NDR. Agent objects indicate the ultimate source
of information such as metadata or groupings of resources (Aggregations).

1.2 Object Content

Each object in the NDR may be composed of three types of digital content:
properties, datastreams, and relationships. The NDR defines a basic content
model that defines specific members and semantics for object content, referred
to as the ‘basic’ or ‘core’ model.

Properties. Properties are literal values that are associated with a specific
NDR object. Internally, properties are stored as relationships in RDF,

2See http://www.openarchives.org/0AIl/openarchivesprotocol.html#Item

where the ‘subject’ is the object itself, ‘predicate’ is the property name,
and the ‘object’ is some literal value. In the NDR model, a property is
identified by a namespace-qualified property name. All properties defined
in the core model (Listed in §A.1) are exposed in the API as members of
the namespace http://ns.nsdl.org/ndr/requestv1.00/. Properties
do not need to be unique unless explicitly defined to be so in a particular
content model.

Datastreams. Datastreams are digital content that is stored in or redirected
by a specific object. Accessing a datastream of an NDR object may return
digital content directly (such as HTML, XML, or binary image data),
or return a redirect to some location on the Internet that contains the
content. Datastreams are identified by their datastream name, which
must be unique in a given object. The datastreams that exist in the basic
NDR model are described in §A.2.

Relationships. Relationships indicate that two NDR objects are related in
some way. Internally, Relationships are represented in RDF, where the
‘subject’ is handle NDR object itself, the ‘predicate’ is the relationship,
and the ‘object’ is the handle of some other NDR object. In the NDR
model, a relationship is identified by a namespace-qualified relationship
name and an identifier of the related object. All relationships in the
basic NDR model are listed in §A.3, and are exposed as members of the
namespace
http://ns.nsdl.org/ndr/request v1.00/.

The basic NDR data model may be supplemented by defining additional
properties, datastreams, or relationships that may be present in objects, as
well as any rules semantics that may apply. All such ‘extended’ content models
must define their additional properties and relationships in a different namespace
than is used for the basic model (http://ns.nsdl.org/ndr/request v1.00/).
These extensions to the basic NDR model are essentially ‘private’;, and may
form the basis for application-specific overlays over the core NDR model.

1.3 Object Identity

All objects in the NDR are identified by a globally-unique CNRI handle.? These
handles are assigned and managed by the NDR, and are expected to persist
indefinitely. Each handle identifies exactly one object, but it may be possible
for an object to have multiple handles.

2 Core API

The core API to the NSDL data repository provides basic functionality to cre-
ate, modify, delete, and read individual objects or components of objects. For

3See http://handle.net

a complete listing of all API methods supported, as well as more detailed infor-
mation about the API in general, please refer to the online documentation.*

2.1 API Basics

The NDR Application Programming Interface (API) defines REST requests to
interact with the repository and its objects. Requests are HT'TP requests to a
base URL followed by the API method name, an object handle (if applicable),
and any additional arguments (if applicable):

http://<base.url>/<method>[/handle] [7args]
Where:
<base.url> is the repository base URL
<method> is the name of the API method
[/handle] is an object’s handle
[7args] are additional arguments required by the specific API method.

Additionally, some requests may require an inputXML parameter that contains
an XML representation of properties, datastreams, or relationships relevant to
the given call.

2.1.1 POST and GET requests

The NDR, API follows the convention that any request that modifies data con-
tent in the repository must be formulated as an HTTP POST request. A request
that only reads information is allowed to use the GET method, but may also
use POST if it makes sense technically to do so (e.g. if the parameters re-
quest exceeds the size limit for GET request). Currently, PUT requests are not
supported.

2.1.2 XML Parameters

Several API methods require properties, datastreams, or relationships of an
object as parameters. As such, we define a parameter (http form variable)
named inputXML to contain a representation of the components of an NDR
object. Its basic form is sketched out below:

<inputXML xmlns="http://ns.nsdl.org/ndr/request_v1.00/" ...>
<(objectType)>
<properties>
[<ns:command>]
<(ns:property)>propertyValue</(ns:property)>

4 Available at http://ndr.comm.nsdl.org/

[</ns:command>]
</properties>

<data>
[<ns:command>]
<(datastream)>...</(datastream)>

[</ns:command>]
</data>

<relationships>
[<ns:command>]
<(ns:relationship)>objectHandle</(ns:relationship)>

[</ns:command>]

</relationships>
</(objectType)>
</inputXML>

where:

(objectType) is the type of object (e.g. Agent, MetadataProvider, etc)
(ns:property) is a qualified property name

(datastreanm is a datastream name

(ns:relationship) is a qualified relationship name

[ns:command] is a qualified name representing some command or action to be
performed on specific object components.

All input XML must be schema valid according to our basic request schema.®

Regardless of what schema the input XML declares, the NDR will attempt to
validate against the basic request schema. Any request that fails validation will
be rejected. If a different schema is declared in the request XML, the request will
be validated both against the default request schema and the declared schema.
This way, it is possible to have an additional layer of checks on application-
specific data, if desired

Unless otherwise stated explicitly, the namespace of any element in the re-
quest XML is assumed to be http://ns.nsdl.org/ndr/request v1.00/.

Shttp://ns.nsdl.org/schemas,/ndr /request_v1.00.xsd

Commands Properties, relationships, and datastreams present in request
XML may be enclosed in command tags that indicate a specified action to
be performed on the enclosed components. For example, consider the following
fragment of request XML:

<properties xmlns:crs="http://example.nsdl.org/ndr/crs#"
xmlns:oai="http://example.nsdl.org/ndr/oai#">
<add>
<crs:collection_id>1234</crs:collection_id>
<crs:collectionNA>5678</crs:collectionNA>
</add>
<oai:setName>NSDL Collections</oai:setName>
</properties>

This example contains three properties, two of which are wrapped in the <add>
command.
The commands defined in the core API are:

<add> Adds the selected components to a digital object
<delete> Deletes the selected components from a specific digital object

<replace> Replaces a specific component in a digital object with with the given
value. If that component does not exist, then it is added.

Commands are not always required in the request XML. Certain API requests
may define a ‘default’ command that is applied to every component that is
not wrapped in an explicit command. These commands are in the standard
http://ns.nsdl.org/ndr/request_v1l.00/ namespace

Example Below is an example of possible inputXML for a modifyMetadata
API request (see §2.4.2 for an explanation of that specific call). Schema dec-
larations have been omitted for clarity and space, and line numbers have been
added for reference in the text:

1 <inputXML xmlns=http://ns.nsdl.org/ndr/request_v1.00/">
2 <properties>

3 <uniqueID>oai:crs.nsdl.org:7043</uniqueID>

4 </properties>

5 <data>

6 <delete>

7 <format type="obsolete_format" />

8 </delete>

9 </data>

10 <relationships>

11 <replace>

12 <metadataFor>2200/example_handle</metadataFor>
13 </replace>

14 </relationships>
15 </inputXML>

In line 3, we see a property uniqueID that is not wrapped in a command.
According to §2.4, the default command for modify requests is <replace>, so
this line indicates to replace the existing uniqueID in the digital object with
the value
oai:crs.nsdl.org:7043. Lines 6-8 indicate that a specific datastream is being
deleted (using a syntax that is unique to the modifyMetadataFormat request),
and lines 11-13 indicate that that the metadataFor relationship is being changed
to point to the object with handle 2200/example handle.

Comprehensive examples of inputXML for every relevant API request may
be found in the online documentation at http://ndr.comm.nsdl.org.

2.2 Creation

Creation of NDR objects is done by the add API methods, which are described
below (Please see the Appendix for examples). In general, the request XML is
composed of property, data, and relationship sections, the contents of which are
given to the newly created digital object.

Commands:
e <add> (default)

If desired, any set of components in the request XML may be wrapped in the
<add> command. Doing so is not required, and is redundant. Use of any
command other than add will result in an error.

2.2.1 addResource

Creates a new Resource object in the NDR.

Properties:

e <identifier type=7> (required). The type attribute is required, and
currently can accept the values URL and OTHER. A type of OTHER is used for
anything that is not a URL, such as an ISBN number, DOI, call number,
etc.

Relationships:
e <member0f> (optional)

All resources have an identifier that is globally unique for each type. If the
given identifier type is URL, then the URL will be normalized and checked for
equivalence to all existing URLs. Otherwise, if the type is OTHER, the entire
unmodified value will be compared to those already in the repository with type

OTHER. If a match is found, then the addResource call will succeed, but will not
actually add a new resource. It will modify the existing, matching resource by
adding any new data contained in the addResource call, and return the handle
to the existing object.

2.2.2 addMetadata

Creates a new Metadata object. Since metadata inherently describes other
objects in the NDR, and must be associated with a MetadataProvider, a valid
addMetadata command requires its metadataFor and metadataProvidedBy ob-
jects to already exist in the NDR.

Properties:

e <uniqueID> (required). All Metadata objects must have a single identi-
fier that is unique within all Metadata provided by the same Metadat-
aProvider.

Datastreams:

e <format type=7> (required). Contains the metadata content.® The value
of type is the metadata format (e.g. oai_dc, nsdl-dc). Multiple <format
type=7> metadata format types may exist for a single metadata object.

Relationships:
e <metadataFor> (required). The object this Metadata object is describing.

e <metadataProvidedBy> (required). The MetadataProvider associated with
this Metadata object.

The behavior of the <format type=7> datastream content is a special case
that is unique to Metadata objects. Using <format type="xyz"> in the re-
quest XML creates a datastream named format _xyz in the NDR object. Since
datastream IDs must be unique within an NDR object, there may exist at most
one datastream for each metadata format. All these datastreams are accessed
through the <format type=7> construct. For example, nsdl_dc metadata would
be included in the <format type="nsdl.dc"> element in the request XML.
Upon an add, this would create a datastream named format nsdl_dc in the
NDR object that would contain the metadata content.

2.2.3 addAggregator

Creates a new Aggregator object. An Aggregator must have a relationship with
(aggregatorFor) an existing Agent object in the NDR.

Datastreams:

6Refer to the online content at http://ndr.comm.nsdl.org/cgi-bin/wiki.pl?addMetadata
for more information on datastream content

e <serviceDescription>’ (required). Contains a Dublin Core metadata
that describes of the aggregation of items, as well as any additional de-
scriptive information such as contacts, branding, etc.

Relationships:

e <aggregatorFor> (Required). A given Aggregator must be aggregatorFor
exactly one Agent object in the NDR.

e <associatedWith> (Optional). Relates an aggregation to a representative
resource (perhaps a ‘landing page’ that provides access to a an applica-
tion’s view of the Aggregator’s objects), if one exists.

2.2.4 addMetadataProvider

Creates a new Metadata Provider object.
Datastreams:

e <serviceDescription>’ (required). Contains a description of the nature
of this MetadataProvider.

Relationships:
e <metadataProviderFor> (Required). A given MetadataProvider must be
metadataProviderFor exactly one Agent object in the NDR.
2.2.5 addAgent

Creates a new Agent object. Use of this call may be restricted to certain
users/applications.

Properties:

e <identifier type=7> (required). The attribute type is required, and
currently may be URL, OTHER, or HOST.

Datastreams:
e <DC> (required). Authoritative description of the agent.

Like the Resource object, Agents must have a unique identifier for a given
type. Agent identifiers, however, may have valid types of { URL, HOST, OTHER}.
If an addAgent method is called where the identifier matches an existing agent
in th NDR with the same identifier and type, that addAgent call will fail with
an error.

"See online documentation at http://ndr.comm.nsdl.org for details on its content

10

2.3 Reads

The basic API for reading object content is get. Other calls exist outside of the
core API that find, fetch, or format content from NDR objects for specialized
purposes such as describe. For a complete listing, refer to our extended API
in §B.

2.3.1 get

The get call can perform two functions on a given object:
e List all properties, datastreams, and relationships
e Retrieve the contents of a given datastream

Listing the contents of an NDR object with handle <objectHandle> is
performed by requesting the URL http://<base.url>/get/<objectHandle>,
with no additional parameters. Results are returned in the response XML, as de-
scribed in the online documentation®. The data in the response is analogous the
request XML in §2.1.2 in that it is composed of three elements: <properties>,
<data>, and <relationships>. The key differences between the response and
request formats for conveying object data are:

e The default namespace for the response elements is
http://ns.nsdl.org/ndr/response v1.0.0/

e All properties and relationships elements are in their native namespace,
which is always different from the default request_v1.0.0/ or response v1.0.0/
namespaces’
e The <data> element contains elements that match the datastream names,
but these elements contain only a URL of the get call that will fetch their
true datastream content.

The contents of individual datastreams may be read from the URL
http://<base.url>/get/<objectHandle>/<datastreamName>. What is re-
turned depends entirely on the content and mime-type of the datastream. Valid
responses include text/xml, ascii text, binary data, and redirects to other URLs.

2.3.2 find

The find call returns the handles of all objects that match a given criterion.
find will return every object that contains all properties and relationships spec-
ified in the inputXML parameter.

Commands:

8http://ndr.comm.nsdl.org/cgi-bin/wiki.pl?APIBasics. The entire response schema
can be retrieved from http://ns.nsdl.org/schemas/ndr/response_v1.00.xsd

9For core NSDL properties and relationships, their native namespace is currently
http://ns.nsdl.org/api/relationships#

11

e <match> (Default)

Since <match> is the only valid command for the find operation, its use is not
required. All properties or relationships contained within a <match> command
(or not wrapped in any command) will be used to find matching objects.

Properties and Relationships

e Any property or relationship is accepted by find, though no particular
property or relationship is required.

Matching object returned by find will contain every property and relation-
ship value specified in the inputXML. Thus, if one imagines each specified prop-
erty or relationship value as a search term, there is an implicit ‘and’ between
every value. Currently, disjunctions or other logical operations cannot be used
in a find command.

2.4 Updates

Modification of NDR objects is done with the modify API methods described
below.

Commands:

e <add> (optional). Indicates that specified components are to be added to
the given object.

e <replace> (default, optional). Indicates that specified components are to
be replaced with the given value, or added if they do not exist.

e <delete> (optional). Indicates that specified components are to be deleted
from the given object.

Properties, relationships, or datastreams may be individually added, deleted
or replaced by wrapping them in a <add>, <delete>, or <replace> element. If
no command is specified, then the default behavior is <replace>. For <delete>
and <replace> commands, each element in the request XML is matched to
a property or relationship in the NDR by matching namespace-qualified tag
names. Datastreams are matched solely by tag name.

2.4.1 modifyResource

Currently, resources are treated as immutable objects in the sense that once
they are created, they may not be modified. Therefore, the modifyResource
command is not available for general use.

12

2.4.2 modifyMetadata
Modifies a Metadata object.

Properties:

e <uniqueID>. The only valid command for uniquelD is <replace>, as it
is a required singleton property.

Datastreams:

o <format type=7?>. Valid commands are <add>, <delete>, and <replace>,
with the following caveats:

— At least one metadata format datastream must exist in the object at
all times

— At most one datastream in a specific format may exist at any time.

For <delete> and <replace> of the <format type=7> datastreams, the
exact datastream will be matched using the type attribute. As explained
in §2.2.2, a <format type="xyz"> element will be matched to a datas-
tream named format _xyz.

Relationships:
e <metadataFor>.

e <metadataProvidedBy>.

2.4.3 modifyAggregator
Modifies an aggregator object.

Datastreams:

e <serviceDescription>. The only valid command for serviceDescription
is <replace>, as it is a required, singleton datastream.

Relationships:

e <aggregatorFor>. The only valid command for aggregatorFor is
<replace>, as it is a required, singleton relationship.

e <associatedWith>. There may be at most one associatedWith relation-
ship.

13

2.4.4 modifyMetadataProvider
Modifies a MetadataProvider object.

Datastreams

e <serviceDescription>. The only valid command for serviceDescription
is <replace>, as it is a required, singleton datastream.

Relationships

e metadataProviderFor. The only valid command for metadataProviderFor
is <replace>, as it is a required, singleton relationship.

2.4.5 modifyAgent
Modifies an Agent object.

Properties

e <identifier type=7>. The only valid command for <identifier type
= 7> is <replace>, as it is a required, singleton property. Additionally,
agent identifiers must be globally unique for each given type, so modifying
the identifier to an existing value will throw an error.

Datastreams

e <DC>. The only valid command for <DC> is <replace>, as it is a required,
singleton datastream.

2.5 Deletes

Deletes to NDR objects do not actually remove the object from the NDR, but
instead mark it as deleted. Since NDR objects are involved in relationships to
others, we must take care when deleting not to violate the following rule:

If the ‘subject’ of a relationship is active, then the ‘object’ of the
relationship must also be active.

Stated another way, an ‘active’ object may not contain a relationship that
points to a deleted object. For example, It is possible to delete a Metadat-
aProvider object only if there are no active Metadata objects with
metadataProvidedBy relationships pointing to it. The relationship
metadataProviderFor between the MetadataProvider and Agent is not rele-
vant, since the MetadataProvider is the ‘subject’ of that relationship. Since
metadataProvidedBy is a required relationship for Metadata objects, the only
way to delete a MetadataProvider object is to delete all related Metadata ob-
jects first.

As another example, an Aggregator may be deleted only when there are
no member0f relationships pointing to it from resources or other aggregations.

14

Since member0f is not a required relationship, an Aggregator may be deleted
after modifying its member resources to delete all member0f relationships that
point to it.

2.5.1 delete

Marks an object as deleted. Does not require any parameters other than the
object handle in the request URL. Since the delete request affects repository
state, it must be submitted with the POST method.

3 Authentication and Security

The security policy of the NDR exists to enforce three general goals:
e Verify the identity of a user of the NDR

e Ensure a user can only modify, add, or delete objects when he/she/it has
permission to do so

e Ensure that some types of content (e.g. specific properties, datastreams,
or relationships) may only be added, modified, or deleted by certain users

To that end, we have implemented an infrastructure that meets these goals
by

e Associating each NDR user with a single ‘Agent’ digital object

e Establishing the identity and authenticity of the user as an NSDL Agent
using digital signatures on all API requests

e Defining a base set of rules that use the graph structure to determine if a
particular user may modify a particular object.

e Creating a mechanism that accepts or rejects an API request given the
user’s identity and a set of applicable rules

3.1 Users and Agents

A user of the NDR, as far as our security model is concerned, is the identity of
the Agent object that represents a person or application that issues API requests
to the NDR, henceforth known as the ‘agent’. Stated another way, the NDR
is accessed by ‘users’. A user is be an individual, institution, or application
that is capable of issuing NSDL API requests. Every such user must have
a representative Agent object in the NDR. The contents and identity of this
Agent object are used for authentication and authorization of API requests.
An API requests may identify the agent that is issuing the call by including
its handle (i.e. the handle of the corresponding Agent object) in the http header.

15

3.2 Authentication

The current NDR authentication protocol (1.0) uses signed HT'TP headers and
public key cryptography to verify the identity of the agent and the veracity of
the contents of the API request (if desired). The process is sketched out below
and explained in detail in the following sections:

Client Side:
e Generate HTTP headers that contain the required content

— Include a content-md5 or x-nsd1-md5 header item with an md5b hash
of message content, if desired

e Generate a “canonical header” string given this HTTP header and request
URL

e Generate an SHA1 hash of this canonical header string, and sign it with
a private RSA key

e Insert a base64-encoded version of this signed hash into the HT'TP header,
along with the agent’s identity (handle).

Server (NDR) Side:

e Generate a “canonical” string from the HT'TP header and request, and an
associated SHA1 hash

e Decrypt the signed SHA1 hash with the Agent’s public key

e Compare the calculated SHA1 hash value of the canonical header with the
signed SHA1 hash.

e Compare md5 hashes of the content with content-md5 or x-nsd1-md5, if
provided

3.2.1 The Canonical Header

The canonical header is a string composed of elements from an HTTP header
and a request URL. The actual process is explained in detail in the appendix,
§C. Essentially, there is a set of required information that must be present
in a canonical header, such as a date and the request URL. Given an accept-
able header, the canonicalization process is able to deterministically generate a
string that may be used for signing the request on the client side and verifying
signatures on the server-side.

16

3.2.2 Header Signature

Given a canonical header, an agent’s private key, and an agent’s identity (i.e.
its handle), an HTTP header may be signed by:

e Calculate an SHA1 hash of the canonical header

e Encrypt the canonical header’s SHA1 hash with the Agent’s private RSA
key

e Base64 encode the signed SHA1 hash

e Include the encrypted hash and agent handle in the header by inserting
the following line into the HTTP header:

x-nsdl-auth: <protocol> <agent handle>:<encrypted SHA1l hash>

where:

<protocol> is the authorization protocol
<agent handle> is a handle to the Agent’s object in the NDR

<encrypted SHA1 hash> is the base64 encoded signed hash of the canon-
ical header.

Currently, there is only one accepted value for <protocol>, namely nsd1-1.

Example Suppose a client application is communicating a request to the NDR,
POST http://repository.nsdl.org/api/addAggregator as an agent identi-
fied by the handle “2200/myHandle”. The http client may produce the following
http header:

accept: text/xml,application/xml,text/plain
accept-encoding: gzip,deflate
accept-charset: utf-8

keep-alive: 300

connection: keep-alive

In this example, none of the default content is relevant to the canonical
header, so required content must be added. According to the given spec, at
minimum an x-nsdl-date element must be added to the header. With this, we
may generate the following canonical header to sign:

POST http://repository.nsdl.org/api/addAggregator

x-nsdl-date: Tue, 04 Jun 2005 04:21:05 -0400

...where each blank line is a single newline character. This canonical header
would then be hashed and signed, giving a base64 encoded signature of
:tIi5Ve4KbELf+Ji2ZSjy2AC1E6Y=. The resulting signed header sent to the
NDR, then, would look like:

17

accept: text/xml,application/xml,text/plain

accept-encoding: gzip,deflate

accept-charset: utf-8

keep-alive: 300

connection: keep-alive

x-nsdl-date: Tue, 04 Jun 2005 04:21:05 -0400

x-nsdl-auth: nsdl-1.0 2200/myHandle:tIi5Ve4KbELf+Ji2ZSjy2AC1E6Y=

3.2.3 Public Keys

The 1.0 authentication protocol uses RSA asymmetric key cryptography to sign
the HTTP headers. Each agent has one key pair. The private key is kept secret
by the user or user application, and is used to sign API headers. The public key
is stored as a Datastream named Public Key in the Agent object in the NDR.
When a signed API request is sent to the repository, this datastream is fetched
from the object indicated by the agent’s handle.

Currently!?, the public key is stored as an inline XML datastream that

conforms to the W3C XML digital signature recommendation®!.

3.3 Rules for Authorized Actions

This section describes the most basic set of rules that are applied to every API
request to determine if a given agent is authorized to add, delete, or modify
(or read) a particular object or component of an object. This set of rules is
expected to grow and perhaps change as the NDR model matures. Please note
that there are application or context-specific rules in place in the NDR that are
not part of this basic set. These rules are documented elsewhere.

There are three general types of rules that can apply to a particular API
operation:

1. Rules that govern adding, deleting, or modifying properties
2. Rules that govern adding, deleting, or modifying datastreams
3. Rules that govern adding, deleting, or modifying relationships

The first two (properties and datastreams) are similar, and can both be thought
of as ‘content’ rules, while rules for modifying relationships slightly differ. The
key difference lies in the fact that a relationship may physically exist as part
of a single object, yet represent a concept found in another. Perhaps the most
relevant example is aggregation membership. An aggregation is conceptually
thought to ‘contain’ items, so one might want to ‘add a resource to an aggre-
gation’. To do so, one must add a ‘memberOf’ relationship to the resource
that points to the aggregation. By physically modifying the resource, you are

10Perhaps this will change at some point to allow the more ubiquitous plaintext PEM
wrapped PKCS#8 format
Uhttp://www.w3.org/TR/xmldsig-core/#sec-KeyInfo

18

logically modifying the contents of the aggregation. Because relationships in-
herently involve two objects, rules that apply to adding or deleting relationships
may have to involve multiple objects.

3.3.1 Authorized Agents

The Security subsystem defines a relationship
http://ns.nsdl.org/ndr/auth#authorizedToChange that may exist between
a MetadataProvider or Aggregator and an Agent or aggregation of agents. An
agent that is related to an Aggregator or MetadataProvider through that rela-
tionship is known as an “Authorized Agent”. An authorized agent may perform
the following actions on an object it is authorized to change through that rela-
tionship:

e Add or remove a ‘memberOf’ or ‘metadataProvidedBy’ relationship to a
Resource or MetadataProvider object that points to that object

e Add, delete, or modify a property of that object
e Delete the authorizedToChange relationship to itself

e Add an authorizedToChange relationship pointing to another Agent or
aggregation

e Delete that object

3.3.2 Trusted Applications

A trusted application is an agent that is a member of the ‘Trusted Applica-
tions’ aggregation. A trusted application has the ability to add relationships
to any agent in the NSDL repository. Specifically, a trusted application may
create a MetadataProvider or Aggregator, and have its metadataProviderFor
or aggregatorFor relationship point to any agent. Additionally, a trusted ap-
plication may add an authorizedToChange relationship to any aggregation or
MetadataProvider, pointing to any agent or aggregation.

3.3.3 Content Rules

If the agent is authorized according to table 1, it may modify any property in
the http://ns.nsdl.org/ndr/request v1.0.0/ namespace or create, modify,
or delete any non-reserved datastreams in the basic content model'?

As an example from the table, a Metadata object may have datastreams or
properties modified by its metadataProvider’s authorized agent, Aggregators or
MetadataProviders may be modified by their authorized agents, and the only
one who may modify an agent is itself.

12Unlike properties and relationships, Datsstreams are not stored as RDF content. Instead,
they are Fedora datastreams or disseminations. As such, there is really no native concept of
namespace for them. They just have names. Consequently, a certain number of names are
reserved datastreams

19

Object Authorization
Resource —

Metadata Ap—mp
MetadataProvider | A,
Aggregator Augg

Agent A

Table 1: Authorization table for relationships, where A, ., is the “Authorized
Agent of the Metadata’s MetadataProvider”, A,,, is the “Authorized Agent of
the Metadataprovider”, Aqqq is the “authorized agent of the Aggregator”, and
A is “the Agent itself”

Currently, there are no content rules that apply to resources, and resources
are considered “immutable” once created. We intend for this to change, but
have not yet incorporated any rules regarding Resources into our framework,
therefore rendering them immutable by default.

3.3.4 Relationship Rules

The basic relationship rules are shown in table 2, which apply to the rela-
tionships in the basic content model. These rules determine which agents are
authorized to create, delete, or modify the corresponding relationships

Object
Resource Metadata M.P Aggregator Agent
Resource — — Aagg —
*g Metadata Ar—mp — Ar—mp Ar—mp Ar—mp
< MP. — — — A,TA
” Aggregator Aagg — Aaugg ATA
Agent — — Augg —

Authorization

Table 2: Authorization matrix for relationships, where A, ., is the “Autho-
rized Agent of the metadata’s metadataProvider,” A,g4q is the “authorized agent
of the aggregator,” A is “the Agent itself,” T'A is “a Trusted Application”

As an example, suppose an API request adds a ‘memberOf’ relationship
between a Resource and an Aggregator. According to the table, the only agent
that may do so is the Aggregator’s authorized agent. Therefore, the rule’s logic
would be “A ‘memberOf’ relationship between a Resource and an Aggregator
is only valid if the agent making the API request is the Aggregator’s authorized
agent.”

20

3.3.5 Application of Rules

The basic authorization rules described in §3.3.3 and §3.3.4 are combined with
any others that may apply'® into a common pool. The rule application mech-
anism tries to match all individual components (properties, relationships, and
datastreams) in the API request one or more rules in the pool. Currently, we
employ a rather strict policy in matching and applying the rules, namely:

e If a component matches any rules, it must comply with each one, evaluated
in the context of the agent making the request

e If there is a component to which no rule applies, the API request is not
authorized

13The system was designed to accommodate the dynamic loading of rules on a per-
namespace basis, but only the minimum required for loading the basic rules, and rules relating
to NDSL applications (e.g. CRS, OAI) are implemented.

21

A Core Object Components

While any object may contain properties, datastreams, or relationships not
detailed here, we define a base set that comprises our basic data model. Below
is a listing of all objects and all components, required and not, that are part of
the basic data model.

A.1 Properties
status (All objects) Indicates whether an object is ‘Active’ or ‘Deleted’.

created (All objects) Contains the date and time the object was created in the
NDR.

modified (All objects) Contains the date time the object was last modified in
the NDR.

objectType (All objects) Indicates the objects class. The current classes of
object are, of course, Resource, Metadata, Aggregator, MetadataProvider,
and Agent.

identifier (Resource, Agent) Uniquely identifies an agent or resource. There
are currently three types of identifiers: URL, host, and ‘other’. Most re-
sources are identified by the URL that points to where their online content
may be found, while many Agents are identified by a ‘host’. Examples of
‘other’ identifiers include an ISBN number, DOI handle, or ISSN.

uniqueID (Metadata) Uniquely identifies a Metadata object for each Meta-
dataProvider. Has no other particular meaning in the basic data model
other than its uniqueness.

A.2 Datastreams

content (Resource) Contains the digital content of a Resource. Examples of
resource content include HTML web pages, PDF documents, XML files,
images, and videos.

format_xyz (Metadata) The Metadata object may contain different formats
of metadata that serve to describe the same object. For a given metadata
format ‘xyz’, there exists a datastream named ‘format_xyz’ that contains
the metadata content.

format_xyz_info (Metadata) Contains information a particular unit of meta-
data.

serviceDescription (Aggregator, MetadataProvider) May contain Dublin core
metadata, branding, and contact information for a given Aggregator or
MetadataProvider. The function of serviceDescriptions are to explain the
nature of a particular aggregation or source of metadata.

22

DC (Agent) Contains Dublin core metadata that serves as the authoritative
description of a particular agent.

A.3 Relationships

memberOf (Subject:{Resource, Aggregator, Agent}; Object: Aggregator) In-
dicates that the given object is a member of an aggregation. A Resource,
Aggregator, or Agent may have any number of memberOf relationships.

metadataFor (Subject: Metadata; Object: {Resource, Aggregator, Agent})
Indicates that a Metadata object contains metadata about another. A
Metadata object must have at least one metadataFor relationship.

metadataProvidedBy (Subject: Metadata; Object: MetadataProvider) In-
dicates that a given Metadata object came from a particular source. A
Metadata object must have exactly one metadataprovidedBy relationship.

aggregatorFor (Subject: Aggregator; Object:Agent) Indicates that a particu-
lar aggregation was created by or belongs to a specific Agent. An Aggre-
gator object must have exactly one aggregatorFor relationship.

associatedWith (Subject: Aggregator; Object: Resource) Indicates that a
particular resource is representative of a given aggregation. In other words,
the contents of the Resource are in some way indicitive of the nature of
the contents of the Aggregation.

metadataproviderFor (Subject: MetadataProvider; Object:Agent) Indicates
that a particular source of Metadata is attributed to an Agent.

B Extended API

§2 detailed the requests present in the core API. These requests comprise a
minimal set of operations that allows full read and write access to all NDR
objects. In this section, we describe all other API requests that exist outside
this minimal core, but are useful for information discovery or visualization.
This list is expected to grow and change as the NDR use cases mature. More
detailed documentation and examples may be found in the online documentation
at http://ndr.comm.nsdl.org

B.1 countMembers

Counts the number of Active members of an Aggregator, or the number of
Metadata items provided by a metadataprovider. This request is executed by
simply viewing the contents of http://<base.url>/countMembers/<handle>
with no parameters. The count is returned in the responseXML.

See: http://ndr.comm.nsdl.org/cgi-bin/wiki.pl?countMembers

23

B.2 describe

Provides information about the content and relationships of an NDR, object. It
differs from get in response format and content, as it is intended to provide
a human or machine readable summary of an object, with added data from
related objects and relationships. As an example, the describe page for a
resource contains metadata gleaned from all related Metadata objects.

Usage ishttp://repository.nsdl.org/describe/<handle>[?view=html],
where the view parameter may be used to produce a human-readable descrip-
tion of the object’s contents in HTML.

See: http://ndr.comm.nsdl.org/cgi-bin/wiki.pl?describe

B.3 findMetadata

Finds a Metadata object given a Resource identifier or MetadataProvider han-
dle.

The base URL for the findMetadata request is, of course,
http://<base.url>/findMetadata/<handle>. The usage depends upon what
information is given:

Given a Resource URL zzx: This request may be executed by appending a
parameter ?URL=xyz to the request base URL

Given a MetadataProvider Handle xyz: Append the parameter
MetadataProvider=zyz to the request URL

Given a Resource Identifier (Not necessarily a URL): Submit a request
XML parameter containing a <identifier type=7?> property.

If a matching Metadata item is found, its handle will be returned in the
request XML.
B.4 findResource

Finds a resource given an identifier or handle, and returns the results of a
describe call on that resource.

Usage:

Given a Resource URLzyz It is possible to formulate a request by append-
ing ?URL=xyz to the request URL.

Given an identifier ¢ and type t It is possible to formulate a request by
appending 7identifier=i&type=t to the URL. Alternatively, one may
submit inputXML containing the identifier and type in the <identifier
type=7> property.

Given a resource handle zyz The request must be formulated by appending
7handle=zyz to the request URL

24

B.5 findAgent

Finds an Agent object given a request XML parameter containing an identifier
as a <identifier type=7> property. Returns response XML containing the
handle of the matching Agent

B.6 listMembers

Lists the handles of all active members of an Aggregator or Metadata provided
by a MetadataProvider. Much like countMembers, this request has no parame-
ters, and is executed by simply viewing
http://<base.url>/listMembers/<handle>.

The response XML contains the handles of all members in no specific order.
Be warned: some aggregations or collections of metadata are very large, and
will result in a correspondingly large response from the repository.

C Header Canonicalization

The canonical header is a string composed of elements from an HTTP header
and a request URL. Given a header and a request URL, the canonical header
string is formed from the following, in order:

1. The method (e.g.. PUT, POST, GET) followed by a space, then the given
URL, terminated with a newline.

2. The exact contents of the Date header element (if present), followed by
a newline. If there is no Date element, place a newline character in its
place.

3. The content-md5 element, if defined. If not in header, then place a new-
line in its place.

4. All header elements that begin with x-nsdl, except for x-nsdl-auth,
ordered alphabetically in ASCII order.

In addition to the above, there are some additional constraints on canonical
header content:

e If there is no Date element, there must be an x-nsdl-date element. in
the canonical header.

e The date (derived from either Date or x-nsdl-date) must be no more
than 5 minutes away from the current NDR time.

e x-nsdl-date must be in standard rfc-822 format

e If both Date and x-nsdl-date are provided, the value from x-nsdl-date
will be compared with the NDR system clock.

e All content in the canonical header must be UTF-8 encoded.

25

Resource diagram) Metadata diagram

‘:| MetadataProvider
Aggregator

Metadata .
metadataProvidedBy
+aggregator | 1..*
memberOf Metadata
metadataFor +uniquelD:Property
1. +format:Datastream
metadataFor metadataFor

Resource 1
- metadataFor 1.

+identifier:Property 1. Aggregator

Agent
Resource

Aggregator diagram

MetadataProvider diagram)

Agent

Metadata
Resource
MetadataProvider
aggregatorFor
metadataFor - —
1 associatedWitn -serviceDescription:Datastream
Aggregator
+serviceDescription:Datastream
1 1 1 metadataProvidedBy
N memberOf
memberOf
memberOf
Metadata

Agent

Agent diagram J

Aggregator

aggregatorFor

Metadata

or

Agent

+identifier:Property
+DC:Datastream

metadataProviderFor

MetadataProvider

Figure 1: The five classes of objects in the NDR, along with properties, datas-
treams, and relationships defined in the basic model

26

