2006 Annual Report
Leveraging Collaborative Networks

NSDL
THE NATIONAL SCIENCE DIGITAL LIBRARY
Overview

"The primary educational goal of the NSDL is to have a measurable impact on science, math, engineering, and technology learning and educational practices in ways that are closely aligned with educational reform movements." NSDL Pathways to Progress, 2001

National education discussions have focused on the critical role of science and mathematics education in creating a globally competitive workforce for the future (NAS 2006) and the importance of information literacy skills at all levels of education (ACRL 2000). A workforce that has a solid knowledge of both science and mathematics, combined with analytical, problem-solving, and creative thinking skills, is essential to our economic and technological competitiveness. It is within the environment of these national education discussions that the National Science Digital Library (NSDL) has grown and evolved in recent years. NSDL increasingly plays a vital role in addressing these needs.

NSDL acts as an agent for leveraging partnerships and collaborations among a wide variety of stakeholders engaged in the educational enterprise—resource providers, technology builders, educational organizations, professional societies, publishers—and as a locus for technical innovations in science education and digital library research.

Managed by a partnership between Columbia University, Cornell University, and the University Corporation for Atmospheric Research (UCAR), NSDL integrates multiple partners, collections, services, research projects, and educational communities into a coherent library.

This 2006 Annual Report illustrates the versatility, breadth, and depth of NSDL. It describes the multiple roles NSDL serves in the national educational landscape: resource repository; digital library service provider; education and outreach tool; communications hub; research and education integrator; teacher professional development source; technology incubator; locus for digital library research; and scaffold for collaboration.

The NSDL network of partners working together to improve STEM education comprise a kind of social middleware—a unique web of context, contribution, and collaboration—connecting end users with technology-based resources and services that promote active, inquiry-based teaching and learning.
NSDL Pathways partners are aggregators of resources and user services appropriate for their communities. They are portal sites supporting resource discovery for broad categories of users, and are developed and managed in partnership with organizations and institutions that have a history and expertise in serving their target audiences. These partnerships demonstrate the value of NSDL in a wide variety of teaching and learning environments.

The National Science Foundation initiated the Pathways strategy for further developing NSDL in 2004. Pathways are themselves partnerships among multiple institutions and/or professional societies, and are discipline-specific or audience-specific creators and aggregators of trusted resources and user services for their communities. They infuse vigor and focus in the library, while building on the foundation provided by more than 200 collections, services, and research projects funded through NSF’s NSDL grant program.

NSDL Pathways partners provide opportunities to coordinate the distributed library building activities of multiple partners and serve key audiences and communities of practice in a more comprehensive way.

NSDL Pathways partners are working with NSDL on key points of intersection, including:

- **Community Sign-On.** The ability for a user registered and logged in at one NSDL Pathway or other partner site to move seamlessly to another NSDL site without additional logins is a primary goal within NSDL. User testing has shown that registration requirements and multiple logins are a significant barrier to users (Khoo 2006). Implementing Community Sign-On across NSDL is key to enabling interoperability between Pathways and NSDL and among multiple partners within Pathways.

- **Implementing methods of web metrics.** Tracking data about use across Pathway and NSDL sites paints pictures of how educators and students use NSDL. Web metrics also help to gauge the impacts of particular sites, web pages, features, and services, and contribute to telling the evaluation story of digital learning objects and digital libraries.

- **Integration with NSDL technical infrastructure, and the sharing of tools and services with multiple partners.** NSDL, Pathways, and other NSF-funded projects are key sources of powerful digital library services for educators. Adapting effective tools and services for use and reuse across NSDL is a fundamental goal of NSDL’s educational mission.

- **Clarifying metadata issues.** Metadata is structured descriptive information about a resource (such as title, description, audience, keywords, resource type) that assists in discovery and use of resources. Enhancements and refinements to metadata and agreement on common vocabularies further promotes interoperability between Pathways and NSDL, supporting cross-collaboration.

NSDL Pathways partners are collaboratively addressing fundamental goals and needs in STEM education—developing high quality teaching materials, utilizing and associating educational standards to effective resources, developing assessments of student learning, and creating opportunities and programs that attract students to pursue careers in science, technology, engineering, and mathematics. NSDL Pathways provide a framework for addressing common goals that ensure adoption and successful use and reuse of resources in the classroom, lecture hall, and lab. These activities serve as a springboard for establishing effective collaborations with other participants dedicated to STEM advancement.

NSDL Pathways by the Numbers

- **Number of Pathways:** 10
- **Number of partnering organizations within Pathways:** 85
- **Number of members of professional societies/organizations within Pathways:** More than 1.2 million
NSDL Pathways

Applied Math and Science Education Repository (AMSER)

AMSER is an applied mathematics and science education portal of resource collections and integrated services designed specifically for use by faculty, staff, and students of community and technical colleges. Community colleges often serve a bridging function between public schooling and baccalaureate education, and train a significant percentage of the national workforce. AMSER’s goals include the creation of professional development that promotes adjunct faculty skills in the application and use of digital resources.

BiosciencesEdNet (BEN)

The BEN collaborative was originally established in 1999 by the American Association for the Advancement of Science, with eleven other professional societies and educational coalitions. Since then it has grown to 26 collaborating entities, with the BEN portal (www.biosciednet.org) providing access to resources that help bioscience educators engage students, shorten lesson preparation time, provide concept updates, and develop curricula in line with national content standards.

ChemEd DLib

One new Pathway partner was added in 2006—the Chemical Education Digital Library (ChemEd DLib). Based at the University of Wisconsin, ChemEd DLib builds on the collections of the Journal of Chemical Education DLib (originally an NSDL Collections project) and the work of the American Chemical Society (ACS) Education Division. An innovative element of the project will be Textbook Tables of Contents browsing—utilizing these cornerstone tools of chemistry courses as a means of locating resources keyed to a specific textbook in use. The ACS is the largest scientific society in the world, with 158,000 members, and the JCE has become the premier pedagogical journal in the chemical sciences. ChemEd DLib will be engaging with other NSDL Pathways such as CSERD, Math Gateway, Teachers’ Domain, ComPADRE, and MatDL on areas of cross-disciplinary interest.

ComPADRE—Communities for Physics and Astronomy Digital Resources in Education

The ComPADRE Pathway focuses on education resources, tools, and learning environments for Physics and Astronomy, from K–12 through undergraduate, and informal learning. Its community-based collections serve specific groups, such as teachers of introductory courses at the high school or college levels, undergraduate physics and astronomy majors, researchers in physics education, teachers and students in upper-level courses, and life-long learners. ComPADRE supports its audiences through content, communication, sharing, and professional development. It helps content developers by organizing, reviewing, disseminating, and sustaining resources; and promotes usage of NSDL and its services by physics and astronomy communities. New services provided by ComPADRE include databases of student research and professional development opportunities, flexible and sharable annotated personal filing cabinets, and an automated citation service using common citation formats (AIP, APA, Chicago, MLA, Endnote export) for referencing resources found in ComPADRE. ComPADRE is working with the Math Gateway on sharing resources that are of interest to audiences of both Pathways and with NSDL Core Integration to provide an NSDL-enabled wiki for curriculum development and dissemination.
Making Connections

Computational Science Education Reference Desk (CSERD)
CSERD is a collaborative project of the Shodor Education Foundation and its partners. Their goal is to identify, develop, and sustain effective educational materials for computational science, technology, engineering, and mathematics. CSERD provides peer-reviewed content and easy-to-use navigation tools to find and use models, tools, and lesson plans tied to learning standards to support discovery-based teaching and learning. CSERD provides educators with expertise on how to build and validate computational models appropriate to a variety of learning levels (K–20). In partnership with the National Computational Science Institute (NCSI) more than 1,000 faculty and teachers have been trained in teaching with computational science through workshops that have introduced them to NSDL and its resources. Additionally, many NCSI participants are actively giving back to NSDL through the collection and review of content.

Engineering Pathway
A partnership between the National Engineering Education Delivery System (NEEDS) at the University of California-Berkeley, and TeachEngineering at the University of Colorado, the Engineering Pathway is a portal to high-quality teaching and learning resources in engineering, applied science and math, computer science/information technology, and engineering technology, designed for use by K-12 and university educators and students. The K-12 engineering curriculum uses engineering as a vehicle for the integration of hands-on science and mathematics through real-world designs and applications that inspire student creativity. Higher education resources include support for national board accreditation, research and scholarship, curricula development, and extracurricular activities for students. Additional services include outreach information and materials, diversity resources, and information about careers and professional societies. The Engineering Pathway has been instrumental in working with NSDL to address the technical and social challenges of Community Sign-On across NSDL sites.

Materials Digital Library Pathway (MatDL)
The MatDL Pathway provides content and services needed across the materials science (MS) community, particularly directed to undergraduate and graduate students, educators, and researchers. MatDL is building an information infrastructure to support MS education, research, and interactions between the two as well as to disseminate resources generated by national and international government-funded teams and centers. In addition to its repository of materials science research articles and publications, MatDL, as part of the NSDL, has created several tools in 2006. The Soft Matter Wiki is publicly accessible information provided by experts in the nanoscience community offering content pertinent to soft matter and nanomaterials with specific focus on computational methods and modeling. MatForge is a collaborative code workspace for open access development of modeling and simulation software. MatDL has also established a Teaching Archive for collaborative development of core undergraduate MS teaching materials, and created services and content for virtual labs in large undergraduate introductory science courses. In these ways MatDL provides a key link with other research initiatives funded by NSF, and is helping to advance exploration of the services that NSDL can provide to the research community.

Math Gateway
Math Gateway
The Math Gateway of the Mathematical Association of America (MAA) offers more than 20,000 rich resources from twelve partner collections. MAA is the largest professional society focused on undergraduate math education. Math Gateway is a prospective user of the Expert Voices blogging environment produced by NSDL, to stimulate conversations around math topics; and Gateway partners are seeking solutions to the challenges of displaying mathematical formulas and processes on the web. Working with NSDL and other Pathways to craft solutions to cross-partner search and discovery of a wide variety of resources is a key goal for the Gateway. The Math Gateway held its first workshop for educators in 2006, introducing MAA member math faculty at the undergraduate and community college level—including those who work with K-12 teachers—to the MathDL library, the Math Gateway, and NSDL. The participants will, in turn, work to spread awareness and use of these resources to colleagues at regional MAA meetings and within their own institutions.

Making Connections
Putting content in context is the mission of the Middle School Portal at Ohio State University (OSU). The Middle School Portal was the prototype project that fostered the development of the Pathways strategy for building NSDL. The MSP continues some aspects of the work of the Eisenhower National Clearinghouse (ENC), which was funded by the U.S. Department of Education from 1992 until 2005. “We take materials on math, science, and technology topics that are taught in middle school, assign them to the appropriate educational standards, and put them in context so they are easy to use,” says Kim Lightle, director of the Portal. For example, a section on aerodynamics has one link that describes the fundamentals of flight to teachers, and several other links that describe it in terms 7th-graders can understand. The Middle School Portal has also participated in NSDL’s Expert Voices project, where teachers shared their ideas and skills about teaching math concepts through measurement exercises in a moderated weblog, Measuring at the Middle Level. Through the portal, OSU provides service for NSDL and other Pathways as a middle school level filter, and is also providing context and narrative around NSDL resources for a joint project with a major educational publisher.

Teachers’ Domain

Teachers’ Domain is a service of WGBH Boston, the producer of many of PBS’s most popular programs. Free video segments from programs such as NOVA and ZOOM!, plus a wealth of interactive features, have helped make Teachers’ Domain a key provider of online educational resources. WGBH’s usage statistics suggest that one out of three K–12 schools in the U.S. have used Teachers’ Domain media resources, lesson plans, or professional development courses. Teachers’ Domain now provides more than 1,000 classroom-ready multimedia resources including video and audio clips, interactives and images, and lesson plans and tools. Each resource comes with an explanatory background article and correlations to state and national curriculum standards. Teachers’ Domain is a key participant in NSDL collaborations that are creating a suite of tools to help resource developers align their content to K–12 educational standards.

Strengthening and leveraging core partnerships and forging new alliances that increase usage and broaden key audience exposure to the library are essential to the long-term success of NSDL. Partnerships with national agencies are being expanded and agreements with science education publishers are adding new content to NSDL and enlarging its role nationally. NSDL is creating alliances with museums and other centers of informal education. NSDL serves as a provider of resource content for these organizations and their education initiatives and activities, offers advice and assistance in the development of special collections, and acts as a dissemination mechanism for education and outreach efforts.

NSDL is collaborating with professional societies such as the National Science Teachers Association (NSTA) to provide professional development opportunities and teacher training events on NSDL resources, tools, and services. With the educational technology organization Project Tomorrow, NSDL is working to have teachers and students in schools across the country use and provide feedback on NSDL resources.
Positioning NSDL in Broader Contexts

NSTA/NSDL Web Seminars 2006

NSTA and NSDL offered five jointly sponsored online web seminars in 2006, with a total participation of 259 attendees.

- NSDL Online: Hurricanes (DLSE; NSDL)
- Birds: Bringing the Field to the Classroom (Cornell Lab of Ornithology)
- The Virtual Bone Lab: eSkeletons (eSkeletons, University of Texas at Austin)
- Plate Tectonics Made to Order (Scripps Institution of Oceanography, Ohio State University)
- Learning by Doing: Computational Science (Shodor Education Foundation; CSERD)

Average number of participants per seminar: 52
Highest participation: 88 (Plate Tectonics)

Number of NSDL presenters: 11

Supporting K–12 Teachers in the Classroom

NSTA Web Seminars

NSDL is partnering with the National Science Teachers Association (NSTA) to present a series of online Web Seminars in 2006 and 2007. Web Seminars are 90-minute, live professional development experiences for teachers that use online learning technologies. NSTA/NSDL Web Seminars encourage participants to interact with scientists, engineers, and education specialists, all from a desktop computer. Highly interactive, the seminars are scheduled at times to allow convenient participation from all U.S. time zones.

Facilitated by an NSTA or NSDL coordinator, experts review specific science content or methods and strategies to teach science. Teachers have the chance to get real-time answers to questions and use online tools. Seminars are available on the NSTA web site (http://institute.nsta.org/web_seminars.asp) and linked to from NSDL.org.

Digital Libraries Go to School

Teaching effective use of web-based technologies in the classroom is one of the goals of a project funded by NSF’s Teacher Professional Continuum program. NSDL is partnering with Utah State University and the State University of New York at Cortland on the Digital Libraries Go to School (DLGTS) project. DLGTS holds workshops designed to improve the online information-seeking and resource design skills of middle school science and math teachers, as well as to widen understanding among developers about teachers’ needs and uses of technology. The workshops feature NSDL resources in combination with Utah State’s Instructional Architect tool (http://ia.usu.edu), which helps teachers create lessons as web pages with built-in links to NSDL resources.

Throughout this three-year project, teacher-created content will be posted on NSDL sites for other teachers to use and review. Initial workshops were held in rural areas of Utah and New York, to focus on providing benefit from online teaching tools in less urbanized locations. Additional workshops will include students in teacher training programs at SUNY Cortland and Utah State.

Project TestDrive

Another component of the NSDL Digital Libraries Go To School workshops, Project TestDrive, will ask teachers and students in 50 schools across the country to identify and use NSDL resources and provide feedback not only on the resources but the classroom context in which they were used. Project Tomorrow, an educational technology organization partnering with NSDL, is developing a rubric for evaluating current and future NSDL resources, and will design and implement teacher and student surveys. “It’s going to be a year-long process,” says Julie Evans of Project Tomorrow, who will conduct the research. The process aims to gain important information necessary to further develop strategies for meeting the changing needs of K–12 teachers. “I think the potential for NSDL is huge,” says Evans. “But you must compete to get people’s attention because they have so many other priorities. Students are pulled in all different directions, and not all teachers are comfortable using online resources. So we’re going to be identifying specific ways to win over hearts and minds to NSDL.”

Supporting Educational Reform

Throughout the nation’s K–12 schools, there has been increasing emphasis over the past ten years on aligning curricula and assessments to centrally established content standards aimed at improving student learning. Scientific literacy for all citizens is the goal of the National Science Education Standards (NSES) and the foundation upon which individual state content standards are generally premised. In mathematics, the National Council of Teachers of Mathematics (NCTM) Standards serve as a similar reference point. NSDL partners have consistently worked to address the needs of educators, but for many the activity of detailing how their individual resources support each of the 49 sets of established state standards has been prohibitively complex. Different sets of state standards exist for core subjects, but among these there are few indices, and little cross-referencing among different state efforts. A collaboration between NSDL, Syracuse University, and JES & Co.’s Achievement Standards Network (ASN) database project is combining standards-based efforts to craft solutions to the challenges of associating resources to standards, both state and national.

An understanding of science makes it possible for everyone to share in the richness and excitement of comprehending the natural world. Scientific literacy enables people to use scientific principles and processes in making personal decisions and to participate in discussions of scientific issues that affect society. A sound grounding in science strengthens many of the skills that people use every day, like solving problems creatively, thinking critically, working cooperatively in teams, using technology effectively, and valuing life-long learning. And the economic productivity of our society is tightly linked to the scientific and technological skills of our work force.

–National Science Education Standards (NSES)
Achievement Standards Network

Several years ago NSF funded a project based at the University of Washington that included development of the Achievement Standards Network (ASN), an authoritative web-based collection of learning standards for primary and secondary schools at both state and national levels. JES & Co., a private non-profit, along with researchers at the University of Washington developed the ASN and is now distributing it through the State Educational Technology Directors Association (SETDA) (http://www.thegateway.org/setdatoolkit). The ASN includes an online forum where standard-writers can discuss topics such as what makes a good standard, and the best ways to correlate a standard to a resource.

Content Assignment Tool

The Center for Natural Language Processing (CNLP) at Syracuse University has been developing software that recognizes patterns in human language so it can be translated into terms computers can understand. Their Content Assignment Tool (CAT) uses Natural Language software to suggest state standards that might be supported by any file or web page that can be processed electronically. Users simply enter the URL for a web page or a link to a document, then choose the appropriate state or national standards that are recommended by the tool. An NSDL partner library and a partner with Syracuse on the CAT project, the Digital Library for Earth System Education (DLESE), has developed a web interface integrated with CAT that allows users to revise, edit, and enhance the standards that CAT assigns to online content.

Combining Services for Standards

With coordination by NSDL, developers from Teachers’ Domain, the Content Alignment Tool project at Syracuse, and the ASN project are collaborating with the common goal of building extensible services on the work accomplished by each of these standards alignment and assignment projects. Supplemental NSF funding granted in 2006 is enabling these NSDL projects to polish existing tools and services for final integration into NSDL. These developers are creating methodologies and adapting their various individual project capabilities for correlating resources to standards, and aligning standards to standards (state to national and state-to-state). This foundational back-end technological work will enable the sharing of information for comparison of alignments; promote the development of a common application programming interface (API); result in a set of descriptions for the methodologies used; and will be informed by user testing. Several Pathways projects (Engineering and Teachers’ Domain) are experimenting with these services—testing these system abilities using their own resource collections. Taken together, these efforts create a solid platform of standards-related work that can be adapted to unique needs by individual Pathways or other partners, and integrated into NSDL as an adaptable service to its education communities.

Context, Contribution, and Collaboration: NSDL 2.0

NSDL is already a highly useful library of almost two million vetted science resources, but until now it has followed the traditional library model of search and discovery of resources. To find out about a resource, users must either consult the brief information in the catalog, or else examine the resource itself. Over the past five years of operation, we have heard a strong and consistent message from our community: “I don’t just want a list of resources; I want to understand how to use them.” The context of a resource—what benchmarks or educational standards it meets; how it relates to other resources; how other teachers have incorporated it into a lesson plan; and what teachers, scientists and librarians have to say about it—are all critical to allowing NSDL users to make effective use of the library.

Building Technologies to Support Educational Context

The second major release of the NSDL technical infrastructure, NSDL 2.0, supports creating this web of context around the resources in the library. Users will be able to discover resources by their context—for example, by their association with a science education benchmark. Users will also be able to explore the context around a resource: reviews, teaching tips, related resources that were used in the same lesson plan, and much more. There are two critical features of NSDL 2.0: it will easily represent the web of related information around and among library resources, and it will make it very easy for qualified library users to add new context and content to the library.

The key component of NSDL 2.0 is the new NSDL Data Repository (NDR). The NDR is implemented using the Fedora middleware (http://fedora.info), an open-source Flexible, Extensible, Digital Object Repository Architecture that is being used and enhanced by libraries, universities, and firms around the world. After several years in development, NSDL switched over to the Fedora-based NDR in January 2007.

Contextualization is a critical component in active learning. Gaining an understanding of a concept includes the process of relating in a meaningful way to an idea, of seeing it cognitively in personal experience or understanding. NSDL 2.0 tools and services will allow users to not only locate resources but to discover and create related information about science resources that can enhance understanding of a topic.
Creating Collaborative Spaces

Often referred to as Web 2.0, many new features in today’s technology landscape are characterized by high user participation in content creation combined with deeper and broader access to interrelated information. NSDL 2.0’s architecture and library services enable NSDL to build on social networking tools and participatory services such as bookmarking and tagging, wikis, blogs, podcasts, and RSS feeds. By allowing these tools to specifically reference, discuss, and organize library resources, and by capturing that information in the NDR, qualified NSDL users will be able to quickly and easily embed these resources in a web of context.

The integration of these social networking tools into the fabric of the library brings another major benefit. It will be easy for communities of interest to form around subsets of resources in the library and collaborate on enhancing library resources as well as context. This is already beginning to happen with NSDL blogs and wikis, even as NSDL works to fully integrate these tools into the NDR.

NSDL’s Expert Voices (http://expertvoices.nsdl.org) service uses blogging technology to support online conversations among scientists, teachers, students, and others. These conversations then become discoverable content around STEM topics. Expert Voices (EV) offers multiple models of use, some short-term focused on one-time events, or long-term for ongoing collaboration. EV can be used for topic-based discussions with links to related resources; as a way for resources to be reviewed and annotated; as a method of discovery for resources and news; as a mechanism to record and disseminate research results among collaborators; or as a question-and-answer forum.

A variety of discussion threads for different NSDL audiences have been piloted in the past year, utilizing three-person “discovery teams” as editors/moderators. Discovery teams can be almost any configuration of experts that come together to promote online conversation on STEM topics: K–12 teachers, university faculty, librarians, media specialists, or library developers. Expert Voices blogs provided follow-up discussion forums for NSTA/NSDL Web Seminars in 2006, and the Meeting Web Kids on Their Own Turf blog explores the many ways students utilize social media and other technology.

The MatDL Pathway’s Soft Matter Wiki (http://matdl.org/matdlwiki), is a collaboration tool to create a locus for sharing research and resources on nanotechnology. This service shows how the educational technology of the NDR can offer unique communities of interest ways to create and organize collections of new or existing materials in the library, with the ability to more easily add metadata, annotations, and related information. NSDL is currently working with the MatDL Pathway on building the wiki extensions to fully integrate wiki resources, annotations, and organization into the NDR. An NSDL-wide NDR-integrated wiki, called OurNSDL, will be released in the first half of 2007. OurNSDL is a groupware solution using the Media Wiki platform. Groupware is technology designed to facilitate the work of groups, either at the same time (synchronous) or at different times (asynchronous); and either face-to-face (co-located) or at a distance. This system will allow NSDL partners to collaborate and to create new STEM education resources and reflect them back into the NDR.

Another service in development is MyNSDL, built on the open-source Connotea system (Nature Publishing Group 2006), a social bookmarking and reference management service adapted to scientific use. Social bookmarking technologies allow users to bookmark and organize, as well as recommend resources through the use of folksonomies (as opposed to the use of a taxonomy). Folksonomies are user-generated labels (called tagging), that categorize content like web pages or links in a way that offers ease of search, discovery and navigation. Another example of folksonomic tagging is Del.icio.us (Schachter 2003).

Exploring Strand Maps: Making Connections

In 1993 the American Association for the Advancement of Science (AAAS) Project 2061 published a set of educational frameworks called Benchmarks for Science Literacy (AAAS 1993). It specified 853 science and math goals that students ought to reach by the time they graduate from high school. NSDL’s Strand Map Service—a partnership between the University of Colorado at Boulder, the Digital Library for Earth System Education, and AAAS—organizes the AAAS benchmarks visually, shows how they interrelate, and ties them to appropriate related resources in the NSDL.

The Strand Map Service offers interactive web pages organized by subject. The text of each benchmark is contained inside a box that is connected with lines to other conceptually related benchmarks. For example, a standard for high school students that says, “matching coastlines and similarities in rock types and life forms suggest that today’s continents are separated parts of what was long ago a single continent” leads to another standard that says “the solid crust of the earth . . . consists of separate plates that ride on a denser, hot, gradually deformable layer of the earth.”

The Strand Map Service models connections between learning goals that were established by Project 2061 in its Atlas of Science Literacy (AAAS 2001). Each AAAS standard is linked to several related resources from NSDL, as well as to the National Science Education Standards (NSES) that are closely associated with it. Collaborating with DLESE, NSDL is working to integrate the Strand Map Service into NSDL, providing the capability to make strand maps available to a much wider audience and to inspire the adaptation of this powerful and innovative technology in a variety of educational settings.
The technological capabilities provided by the NDR offer previously unavailable flexibility and variety in the ways that the many projects, tools, and services that comprise NSDL can be integrated, adapted for use, and customized to the unique needs of multiple communities of practice in support of STEM education.

Digital Library Research and NSDL

NSDL and its partners continue to make fundamental contributions to digital library research. Throughout 2006, NSDL researchers have provided key participation at digital library conferences and workshops around the world. NSDL researchers were the recipients of the Vannevar Bush Best Paper Award at the Sixth ACM/IEEE Joint Conference on Digital Libraries (JCDL 2006) for the paper Metadata Aggregation and “Automated Digital Libraries”: A Retrospective on the NSDL Experience (Lagoze et al. 2006a). This paper summarized the major lessons learned over a number of years of research and development work on the initial version of NSDL. At another major digital library conference of 2006, the 10th European Conference on Research and Advanced Technology for Digital Libraries (ECDL 2006), NSDL researchers again won the Best Paper award for Representing Contextualized Information in the NSDL (Lagoze et al. 2006b). This paper presents the architecture and design of NSDL 2.0.

In addition to the work summarized in these papers, significant NSDL research projects and contributions have included the Content Assignment Tool; the Strand Map Service; resolving scalability issues for Fedora repositories; research in the automated assignment of grade levels to science resources, and the iVia/Data Fountains project, a technology that crawls web sites and generates automatic forms of metadata. Both the Middle School Portal and MatDL Pathways have experimented with and served as test beds for iVia, which holds the promise of helping to alleviate time- and labor-intensive metadata generation by humans, and offers a way to help conserve limited project resources. Finally, the new NSF/Mellon-funded OAI Object Re-Use and Exchange Initiative (OAI 2006) grew, in part, out of the work involved in designing the digital object architecture of NSDL 2.0.

Educational Cyberinfrastructure

The Office of Cyberinfrastructure (OCI) at the National Science Foundation serves as the locus for coordination and collaboration focused on advances in computing and related information technology. Cyberinfrastructure describes the hardware, software, scientific data, and advanced computing technologies (such as those utilized in the TeraGrid Science Gateways Initiative), combined with essential social infrastructure—organizational models and processes of collaboration enabling scientific discovery that are multi-disciplinary and multi-institutional in scope. Many aspects of cyberinfrastructure are applicable and apparent in educational technology trends: open education resources, reuse and remixing of resources, blurring of formal and informal learning, collaborations between professionals and amateurs, and understanding what the gaming world can apply to educational technology (Atkins 2006).

NSDL itself is one example of cyberinfrastructure: it provides a collaborative scaffold for people to create multiple combinations of technology, content, and services to support learning in all its dimensions. As NSDL continues to play a role in the development of a national cyberinfrastructure, there are multiple opportunities to partner with or provide services on the national level to other science gateways in the NSF community—serving a data stewardship role within the cyber world; and to other privately and publicly supported education initiatives—sharing promising practices for using online STEM resources in a variety of education settings. Ultimately, as part of the national cyberinfrastructure, NSDL will have a role in closing the loop between applying innovative research in a variety of education settings.

An aspect of educational cyberinfrastructure that is fundamental within NSDL is the Community Sign-On (CSO) initiative. Community Sign-On describes the ability for a user registered and logged in at one NSDL Pathway or other partner site to move seamlessly to another NSDL site without additional logins. NSDL has been working with partner projects, at the technical, design, and policy levels to ensure that the full potential of this powerful, yet complex technology solution is realized. Leading the way among the partner sites, the Engineering Pathway has completed CSO integration and now has a fully functional system in production. A number of other projects are close to completion and are expected to reach production in the first half of 2007.

CSO has extensive implications for all projects, and dependencies that are the subject of ongoing discussion at all levels within NSDL. Key issues include data collection and sharing, user privacy, and integration of services. There is now a great deal of understanding within the NSDL on these complex issues and policies.
and recommended practices are being developed for release in the coming year. These will be instrumental in ensuring that the NSDL community, projects and users alike, derives full benefit from CSO.

NSDL is working with the National Science Foundation directly as well as via Pathways partners with connections in research arenas to more ably support the agency and the research community overall. There are rich opportunities for NSDL to expand its role as a repository and archive for NSF-funded online STEM content and both scientific and educational research results. In addition, NSDL provides NSF’s Office of Legislative and Public Affairs (OLPA) a service published on the NSF site called Classroom Resources (http://www.nsf.gov/news/classroom)—a multi-disciplinary collection of STEM lessons and web resources from the NSDL for teachers and students.

Alliances with the Scholarly Publishing Community

Scholarly journals, textbooks, and educational software have long been the foundation of research and academic activities in science, technology, engineering, and mathematics. For this reason, NSDL has, since its inception, worked to build productive alliances with a broad variety of publishers, a growing number of whom are contributing metadata and/or endorsing or facilitating educational development of full text content through linkages to the library’s central collection and Pathways collections. The past year saw significant growth in the number and depth of the relationships NSDL has with publishers.

The strengths of scientific publishers afford natural points for collaboration with NSDL: mechanisms for acquiring and peer-reviewing content from scientists and science teachers; effective systems for editorial development, design, and production; excellent market research and evaluation services; established models for contracts, licenses, copyright, and intellectual-property management; and reliable systems for marketing and sustainability. Many publishers also work with vendors who provide technical infrastructure and support for schools, providing additional avenues into classrooms. Building on existing editorial arrangements and collaboratively exploring the possibilities in these activities with science publishers helps ensure that NSDL reaches its full potential as a functional and highly valued resource.

NSDL agreements with science publishers
Scientific American
Oxford University Press Journals
HighWire Press
Springer
Elsevier Books
John Wiley Books
Blackwell Publishing
Tool Factory
Cambridge University Press Books
Cambridge University Press Journals
Houghton-Mifflin/McDougal-Littell
Nature Publishing Group
Tom Snyder Productions
The Teaching Company
BioOne
National Academy Press
McGraw-Hill Higher Education
Prentice Hall

Strengthening and leveraging NSDL’s core partnerships and forging new strategic alliances are critical for the long-term success of the National Science Digital Library. Leveraging the expertise, tools and services, reputations, audience bases, and other resources of the NSDL network of partners strengthens each part as well as the whole. Improving the user experience at NSDL.org and across partner sites, enhancing NSDL’s educational utility, and creating centralized services from which all parts of the network can gain benefit and efficiencies are the key goals in NSDL’s strategies for building a strong future for the library.

Specific areas of work in 2007 will leverage the strong components of NSDL that this report has cited—collaborative areas of development with Pathways, including web metrics/usage tracking, accessibility, and Community Sign-On; search and discovery enhancement; tools and services integration with NSDL 2.0 infrastructure; collaborative mechanisms and services for user/contributors; extensible services supporting standards-based education; powerful tools such as the Strand Map project, and the expansion of strategic partnership-building efforts and publisher relations. All of these activities serve to create a critical mass of value between and among the network of partners and participants in the NSDL.

The vitality of NSDL has always been its community—a diverse and creative network of people and projects dedicated to effective STEM education and to building, maintaining, and improving the information landscape for new generations.
References

NSDL Projects 2000–2006

Since 2004 NSF’s library-building strategy for NSDL has transitioned from the funding of multiple collections, services, and targeted research projects, to one that crystallizes library development via the Pathway partnerships, working together with NSDL’s Core Integration effort. The many collections, services, and targeted research projects of NSDL featured in the following projects list form the foundation of STEM content upon which NSDL has been built, and have served as incubators of the Pathways partnerships that have emerged in the past three years.

The NSF has funded approximately $137.4 million (an average of $23 million per year) in support of 235 NSDL grant awards in 34 states since 2000, in five tracks:

• Core Integration, a multi-institutional effort that supports the technical infrastructure, outreach, and coordination of NSDL’s distributed structure.

• Pathways partnerships, portal sites that act as aggregators of resources and services for specific communities of users, either disciplinary or grade-level specific.

• Services projects, which enhance NSDL’s impact, efficiency, and value in support of users and developers.

• Targeted research projects, which conduct original investigations of new digital learning technology and evaluate the impact of NSDL.

• Collection projects that have gathered subsets of NSDL’s content within a coherent theme or specialty.

State distribution of NSDL grants received by primary investigators, 2000–2006

States with NSDL projects

[Map showing states with NSDL projects]
<table>
<thead>
<tr>
<th>State</th>
<th>Institution</th>
<th>Project Name</th>
<th>Investigator</th>
<th>Fiscal Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>Center for Image Processing in Education</td>
<td>SIMPLE Science: Image-Based Learning Tools for K-12 Education</td>
<td>Moore, Stephen</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>University of Arizona</td>
<td>An Active Object-Based Digital Library for Microeconomics Education</td>
<td>Cox, James</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Tree of Life Project: A Digital Library of Biodiversity Information</td>
<td>Maddison, David</td>
<td>2003</td>
</tr>
<tr>
<td>CA</td>
<td>California State University</td>
<td>Scaling the Peer Review Process for National STEM Education Digital Library Collections</td>
<td>Hanley, Gerard</td>
<td>2002</td>
</tr>
<tr>
<td>Design Science, Inc.</td>
<td></td>
<td>Enhancing the Searching of Mathematics Professional Development Institutes to Increase Afterschool Educators' Use of the NSDL</td>
<td>Miner, Robert</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>Exploratorium</td>
<td>Exploratorium Online: Exhibit-Based Science Learning and Teaching Digital Library</td>
<td>Hsi, Sherry</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>Foothill College</td>
<td>Collaborative Project: To Gather, Document, Filter and Assess the Bread and Depth Collection of the Digital Library for Earth System Education (DLESE)</td>
<td>Dileo, Leonardo, Christopher</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collaborative Project: To Enhance the Depth, Breadth, and Quality of the Collections of the Digital Library for Earth System Education (DLESE)</td>
<td>Dileo, Leonardo, Christopher</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>The Long Now Foundation</td>
<td>Collaborative Project: The Rosetta Project - ALL Language Archive</td>
<td>Mason, James</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>McLean Media</td>
<td>Creating Interactive Educational Activity Templates for Digital Libraries</td>
<td>McLean, Lois</td>
<td>2004</td>
</tr>
<tr>
<td>New Media Studio</td>
<td></td>
<td>Collaborative Project: Personal Collections: Enhancing the Utility of the NSDL</td>
<td>Landsfeld, Martin</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Data Discovery Toolkit and Foundry</td>
<td>Data Discovery Toolkit and Foundry</td>
<td>Caron, Bruce</td>
<td>2001</td>
</tr>
<tr>
<td>Stanford University</td>
<td></td>
<td>Collaborative Project: The Rosetta Project - ALL Language Archive</td>
<td>Keller, Michael</td>
<td>2003</td>
</tr>
<tr>
<td>University of California, Berkeley</td>
<td>Collaborative Research: A Comprehensive Pathway for K-Gray Engineering Education</td>
<td>Agogino, Alice</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collaborative Research: Developing a Learner-Centered Metaphor for Science, Mathematics, Engineering and Technology Education</td>
<td>Agogino, Alice</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collaborative Project: Enhancing Interoperability of Collections and Services</td>
<td>Agogino, Alice</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Developing a Core Integration System for a National Science, Mathematics, Engineering, and Technology Education Digital Library at www.smete.org</td>
<td>Agogino, Alice</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>University of California, Los Angeles</td>
<td>Collaborative Research: Health Education Assets Library</td>
<td>Halle, David</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>University of California, Office of the President, Oakland</td>
<td>Collaborative Project: Assessing the User-base and Expanding the Usability/Reach of the Analytical Sciences Digital Library through Developmental Workshops</td>
<td>Greenstein, Daniel</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>University of California, Riverside</td>
<td>Collaborative Project: The Rosetta Project - ALL Language Archive</td>
<td>Uijtdehaage, Sebastian</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>University of California, San Diego</td>
<td>Collaborative Research: THREDDS Second Generation</td>
<td>Domenico, Ben</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>University of Colorado, Santa Barbara</td>
<td>Collaborative Research: TeachEngineering - Hands-on Resources for K-12</td>
<td>Geary, Ed</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>University of Southern California</td>
<td>Collaborative Project: To Gather, Document, Filter and Assess the Bread and Depth Collection of the Digital Library for Earth System Education (DLESE)</td>
<td>Anderson, Kenneth</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>Colorado School of Mines</td>
<td>Collaborative Research: A Comprehensive Pathway for K-Gray Engineering Education</td>
<td>Mooney, Michael</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>University of Colorado at Boulder</td>
<td>Collaborative Research: A Comprehensive Pathway for K-Gray Engineering Education</td>
<td>Sullivan, Jacqueline</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>University Corporation for Atmospheric Research</td>
<td>Collaborative Project: Core Integration of the National SMETE Digital Library</td>
<td>Domenico, Ben</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collaborative Project: Core Integration for a Federated NSDL</td>
<td>Fulker, David</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collaborative Project: Core Integration - Leading NSF toward Long-Term Success</td>
<td>Howe, Kaye</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>United States Air Force Academy</td>
<td>JITTDL: The Just-In-Time Teaching Digital Library</td>
<td>Patterson, Evelyn</td>
<td>2003</td>
</tr>
</tbody>
</table>
State | **Institution** | **Project Name** | **Investigator** | **Fiscal Year**
--- | --- | --- | --- | ---
DC | American Association for the Advancement of Science | BioSciEd Net (BEN) Collaborative: Cycle 3 (Pathway) | George, Yolanda | 2005
 | | BioSciEd Network (BEN) | George, Yolanda | 2000
American Chemical Society | Collaborative Project: ChemEd Digital Library: An NSF Pathway for Chemical Sciences Education | Kirchoff, Mary | 2006
American Psychological Association | Online Psychology Laboratory | McCarthy, Maureen | 2004
Association of Research Libraries | Developing a National Science Digital Library (NSDL): LIZQUAL+ Protocol | Webster, Duane | 2001
Mathematical Association of America | The Math Gateway | Moore, Lawrence | 2004
 | | MATHDL: A Library of Online Learning Materials in Mathematics and Its Applications | Moore, Lawrence | 2000
National Academy of Sciences | Annals of Research on Engineering Education (AREE) | Fortenberry, Norman | 2004
GA | Emory University | Collaborative Project: The OCKHAM Library Network, Integrating the NSDL into Traditional Library Services | Halbert, Martin | 2003
Kennesaw State University | Collaborative Project: Nuclear Pathways - A Model for Composite Collections | Peterson, Laurence | 2004
HI | Pacific Resources for Education and Learning | Ethnomathematics Digital Library | Lane, Nancy | 2001
IA | Eastern Iowa Community College District | (NSDL) Advanced Technology Environmental Education Library (ATEEL) | Kabat Lensch, Ellen | 2002
IL | Argonne National Laboratory | Atmospheric Visualization Collection | Klaus, Christopher | 2000
Northwestern University | Collaborative Research: THREDDS Second Generation | Edelson, Daniel | 2003
University of Illinois, Urbana-Champaign | Collaborative Project: Assessing the User-base and Expanding the Usability/Reach of the Analytical Sciences Digital Library through Developmental Workshops | Scheuine, Alexander | 2004
IN | Indiana University | Project ENABLE: Learning through Associations in a Grid-based Bioinformatics Digital Library | Mostafa, Javed | 2003
KS | Kansas State University | Reciprocal Net – A Distributed Molecular Database | Huffman, John | 2001
University of Kansas Center for Research, Inc. | Collaborative Project: Physics Teaching Web Advisory (Pathway) - A Digital Video Library for Enhancement and Preparation of Physics Teachers | Zollman, Dean | 2002
MA | Education Development Center | Analytical Sciences Digital Library | Kuwana, Theodore | 2001
Harvard-Smithsonian Astrophysical Observatory | CaFEN: Career Resources Education Network for STEM | Nair, Santa | 2003
 | | Effective Access: Using Digital Libraries to Enhance High School Teaching in STEM | Hanson, Katherine | 2002
 | | Gender and Science Digital Library | Hanson, Katherine | 2001
University of Maryland | Collaborative Research: Developing a Learner-Centered Metahausaurus for Science, Mathematics, Engineering and Technology Education | Wood, William | 2005
Universities Space Research Association | Virtual Telescopes in Education (TIE) | Hoban, Susan | 2001
ME | Maine Mathematics and Science Alliance | PRISMS - Phenomena and Representations for the Instruction of Middle School Science | Keeley, Page | 2004
MI | Eastern Michigan University | Collaborative Research: DLConnect: Connecting Underserved Teachers and Students with NSDL Learning Resources and Tools | Hoffman, Ellen | 2004
 | | Infusing NSDL in Middle Schools: Obstacles and Strategies | Hoffman, Ellen | 2003
 | | Collaborative Project: The Rosetta Project - ALL Language Archive | Arister-Dry, Helen | 2003

State	**Institution**	**Project Name**	**Investigator**	**Fiscal Year**
Marine Biological Laboratory	Collaborative Project: Digital Educational Resources in Microbial Ecology, Evolution and Diversity (DERMED1)	Patterson, David	2003	
TERC Inc.	Earth Exploration Toolbook Workshops to Facilitate the Use of Earth Science Data in Education	McAuliffe, Carla	2005	
	Earth Exploration Toolbook: A Collection of Examples of Educational Uses of Earth System Science Tools, Datasets and Resources	Ledley, Tamara	2002	
Tufts University	Collaborative Research: Managing Authority Lists for Customized Linking and Visualization: A Service for the National SMETE Digital Library	Sauer, Anne	2002	
University of Massachusetts Amherst	Customizing Resources for NSDL	Woolf, Beverly	2005	
	Question Triage for Experts and Documents: Expanding the Information Retrieval Function of the NSDL	Croft, W. Bruce	2002	
Worcester Polytechnic Institute	Collaborative Research: A Comprehensive Pathway for K-Gray Engineering Education	Cyr, Martha	2005	
	Collaborative Research: TeachEngineering - Hands-on Engineering	Cyr, Martha	2002	
WBGH Educational Foundation	Teachers’ Domain Educational Standards Enhancement Pathway	Woychese, John	2003	
	Teachers’ Domain Pathways to Science: Rich-Media Sources for K-12 Teachers	Sicker, Theodore	2004	
American Association of Physics Teachers	ComPADRE Pathway for Physics and Astronomy Education	Mason, Bruce	2005	
	ComPADRE: Communities for Physics and Astronomy Digital Resources in Education	Mason, Bruce	2002	
Johns Hopkins University	Collaborative Proposal: Managing Authority Lists for Customized Linking and Visualization: A Service for the National SMETE Digital Library	Choudhury, Golam	2002	
University of Maryland	Collaborative Research: Developing a Learner-Centered Metahausaurus for Science, Mathematics, Engineering and Technology Education	Wood, William	2001	
Universities Space Research Association	Virtual Telescopes in Education (TIE)	Hoban, Susan	2001	
ME	Maine Mathematics and Science Alliance	PRISMS - Phenomena and Representations for the Instruction of Middle School Science	Keeley, Page	2004
MI	Eastern Michigan University	Collaborative Research: DLConnect: Connecting Underserved Teachers and Students with NSDL Learning Resources and Tools	Hoffman, Ellen	2004
	Infusing NSDL in Middle Schools: Obstacles and Strategies	Hoffman, Ellen	2003	
	Collaborative Project: The Rosetta Project - ALL Language Archive	Arister-Dry, Helen	2003	

NSDL Projects 2000–2006
<table>
<thead>
<tr>
<th>State</th>
<th>Institution</th>
<th>Project Name</th>
<th>Investigator</th>
<th>Fiscal Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN</td>
<td>Carleton College</td>
<td>Pedagogic Services for Digital Libraries</td>
<td>Mandauc, Cathryn</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linking Pedagogy, Resources and Community Interaction to Support Entry-Level Geoscience Courses</td>
<td>Mandauc, Cathryn</td>
<td>2002</td>
</tr>
<tr>
<td>MO</td>
<td>University of Missouri</td>
<td>Enhancing Interoperability of NSDL Collections and Services</td>
<td>Chen, Su-Shing</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digital Library for Learning Life Sciences</td>
<td>Chen, Su-Shing</td>
<td>2000</td>
</tr>
<tr>
<td>MT</td>
<td>Montana State University</td>
<td>Collaborative Project: Digital Educational Resources in Microbial Ecology, Evolution, and Diversity (DERMEEED-1)</td>
<td>Mogk, Dave</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PER-CENTRAL: A Digital Library Supporting Physics Education Research</td>
<td>Beichner, Robert</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>North Carolina State University</td>
<td>The Computational Science Education Reference Desk</td>
<td>Panoff, Robert</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Winston-Salem State University</td>
<td>The Digital Archive Network for Anthropology (DANA)</td>
<td>Clark, Jeffrey</td>
<td>2001</td>
</tr>
<tr>
<td>ND</td>
<td>North Dakota State University, Fargo</td>
<td>The Moving Image Gateway</td>
<td>DeFelice, Barbara</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digital Library Service Integration</td>
<td>Bieber, Michael</td>
<td>2004</td>
</tr>
<tr>
<td>NJ</td>
<td>New Jersey Institute of Technology Foundation</td>
<td>General Recommendation Engine (GRE) for NSDL</td>
<td>Im, Il</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td>Rutgers University New Brunswick</td>
<td>The Moving Image Gateway</td>
<td>Agnew, Grace</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integral Integrating Libraries: Expanding the NSDL's Reach to Traditional Libraries through Resource Integration</td>
<td>Bieber, Michael</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digital Library Service Integration</td>
<td>Bieber, Michael</td>
<td>2002</td>
</tr>
<tr>
<td>NY</td>
<td>Columbia University</td>
<td>Collaborative Project: To Enhance the Depth, Breadth, and Quality of the Collections of the Digital Library for Earth System Education (DLESE)</td>
<td>Kastens, Kim</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collaborative Project: Core Integration - Leading NSDL toward Long-Term Success</td>
<td>Wittenberg, Kate</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collaborative Project: Core Integration of the National SMETE Digital Library</td>
<td>Wittenberg, Kate</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collaborative Project: Core Integration System for a National Science Digital Library</td>
<td>Seber, Dogan</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collaborative Project: Core Integration - Leading NSDL to Interoperable Metadata</td>
<td>Hillman, Diane</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collaborative Project: Core Integration - Leading NSDL toward Long-Term Success</td>
<td>Arts, William</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enabling Large Scale Coherence Among Mathematical Texts in the NSDL</td>
<td>Constable, Robert</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Science Knowledge and Education Network Building a User Base Around Scientific Publications: Editing Online Content and Annotating Scientific Materials</td>
<td>Kelling, Steven</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collaborative Research: A Digital Library Collection for Visually Exploring United States Demographic and Social Change</td>
<td>Beveridge, Andrew</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>solutions-united.com</td>
<td>Paik, Woonjin</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer-Assisted Content Standard Assignment and Alignment</td>
<td>Diekema, Anne</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Students Using NSDL (SUN): Science Information Literacy and the NSDL</td>
<td>Silverstein, Joanne</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrating Expertise into the NSDL</td>
<td>Lankes, Richard</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MetaTest: Evaluating the Quality and Utility of Metadata</td>
<td>Liddy, Elizabeth</td>
<td>2002</td>
</tr>
</tbody>
</table>
ReMarkable Texts: A Digital Notepad for the NSDL

Services to Link Opencourseware Repositories and

Collaborative Research: TeachEngineering -

Leadership Development for Technology Integration: Developing an Effective NSDL Teacher Workshop Model

Math Tools Project

Collaboration Services for the Math Forum Digital Library

Improving Knowledge Transfer: Prioritizing Content Creation in Digital Libraries Using Competitive Intelligence Systems

NSDL Projects 2000–2006

Stahl, Gerry

University of Oklahoma

University of Dayton

University of Tennessee, Knoxville

TX Rice University

University of Texas, Austin

University of Texas, Medical Branch at Galveston

UT University of Utah

Utah State University

Collaborative Proposal: A Component Repository and Arrangement and Elaboration of Educational Resources

Collaborative Project: Superimposed Tools for Active Arrangement and Elaboration of Educational Resources

Project Name

Project Name
<table>
<thead>
<tr>
<th>State</th>
<th>Institution</th>
<th>Project Name</th>
<th>Investigator</th>
<th>Fiscal Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>American Geological Institute</td>
<td>Collaborative Research: To Enhance the Depth, Breadth, and Quality of the Collections of the Digital Library of Earth System Education (DLESE)</td>
<td>Tahirkheli, Sharon</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td>American Indian Higher Education Consortium</td>
<td>Digital Library Services for American Indians</td>
<td>Billy, Carrie</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td>International Technology Education Association</td>
<td>National Digital Library for Technological Literacy</td>
<td>Sterry, Len</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td>National Association of Biology Teachers</td>
<td>Biology Education Online - An Interactive Electronic Journal</td>
<td>Carley, Wayne</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>Old Dominion University Research Foundation</td>
<td>A Self-sustainable Digital Library for Evolving Communities</td>
<td>Zubair, Mohammad</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>University of Virginia</td>
<td>Decentralized Image Retrieval for Education (DIRECT)</td>
<td>Acton, Scott</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td>Virginia Polytechnic Institute and State University</td>
<td>Personalization of Content Bridging the Gap between NSDL and its Users through the Course web site</td>
<td>Perez, Manuel</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collaborative Research: A Comprehensive Pathway for K-Gray Engineering Education</td>
<td>Tront, Joseph</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collaborative Project: The OCKHAM Library Network, Integrating the NSDL into Traditional Library Services</td>
<td>Fox, Ed</td>
<td>2003</td>
</tr>
<tr>
<td></td>
<td>Washington and Lee University</td>
<td>Computing and Information Technology Interactive Digital Educational Library (CIITDEL)</td>
<td>Fox, Ed</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Digital Library Network for Engineering and Technology</td>
<td>Rahman, Saifur</td>
<td>2000</td>
</tr>
<tr>
<td>WA</td>
<td>University of Washington</td>
<td>Collaborative Project: Project: Interoperable Metadata</td>
<td>Sutton, Stuart</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collaborative Project: StandardConnection - Mapping NSDL Educational Objects to Content Standards</td>
<td>Sutton, Stuart</td>
<td>2001</td>
</tr>
<tr>
<td>WI</td>
<td>University of Wisconsin, Madison</td>
<td>Collaborative Project: ChemEd Digital Library: An NSDL Pathway for Chemical Sciences Education</td>
<td>Moore, John</td>
<td>2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Journal of Chemical Education Digital Library</td>
<td>Moore, John</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMSER: Applied Math and Science Education Repository</td>
<td>Bower, Rachael</td>
<td>2004</td>
</tr>
</tbody>
</table>
2006 Leadership

NSDL Core Integration
Kaye Howe (Director)
University Corporation for Atmospheric Research (UCAR)

Dean Kraft
Cornell University
Kate Wittenberg
Columbia University

Policy Committee
Lillian Cassel (Chair)
Villanova University
Martin Halbert (Chair-elect, 2006)
Emory University
Scott Lathrop (Co-Chair)
University of Chicago

Content
Kimberly Lightle (Chair)
Ohio State University
Stuart Chalk (Co-Chair)
University of North Florida

Educational Impact and Evaluation
Laura Bartolo (Chair)
Kent State University
Flora McMartin (Co-Chair)
Syracuse University

Sustainability
Paul Berkman (Chair)
University of California at Santa Barbara
Liz Liddy (Co-Chair)
Syracuse University
Lois McLean (Co-Chair)
McLean Media

Technology
Robby Robson (Chair)
Eduworks
Ed Almasy (Co-Chair)
University of Wisconsin
Martin Halbert (Co-Chair)
Emory University

National Visiting Committee
Diana Oblinger (Chair)
Vice President, Educause
Martin Blume
Editor-in-Chief
American Physical Society
Wade Ellis
Mathematics Department
West Valley College
Ira Fuchs
Independent Philanthropy Advisor
Vice President Emerita
Keck Foundation
Thomas Moritz
Associate Director, Administration
Chief of Knowledge Management
Getty Research Institute
Alfred Moyé
Former Director of University Relations
Hewlett-Packard
Thomas Reeves
Professor, Instructional Technology
University of Georgia
Lisa Roberts
Founding Director of Educational Technology
Bernard Rous
Deputy Director/Electronic Publishing Association of Computing Machinery
Abby Smith
Consultant
Gerry Wheeler
Executive Director
National Science Teachers Association

Standing Committees
Community Services
David Yaron (Chair)
Carnegie Mellon University

Emory University
Rachael Bower
University of Wisconsin - Madison
Bruce Caron
The New Media Studio
Brandon Murumatsu
Utah State University
Steve Weimar
Drexel University

Note: Subcontract figures are a part of the Core Integration budget but are separated here to discern between CI and community tasks. As such, Subcontracts Awards are not listed in the total number of awards.

NSDL Funding FY2000–FY2006

<table>
<thead>
<tr>
<th></th>
<th>Core Integration</th>
<th>Subcontracts</th>
<th>Pathways</th>
<th>Collections</th>
<th>Services</th>
<th>Research</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>Number of Awards</td>
<td>6</td>
<td>0</td>
<td>13</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Percentage of Funding</td>
<td>32%</td>
<td>0%</td>
<td>42%</td>
<td>24%</td>
<td>2%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Dollar Amount</td>
<td>4,398,381</td>
<td>0</td>
<td>5,780,925</td>
<td>3,222,401</td>
<td>249,945</td>
<td>13,651,652</td>
<td></td>
</tr>
<tr>
<td>FY2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>Number of Awards</td>
<td>3</td>
<td>4</td>
<td>18</td>
<td>14</td>
<td>4</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>Percentage of Funding</td>
<td>18%</td>
<td>1%</td>
<td>57%</td>
<td>21%</td>
<td>3%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Dollar Amount</td>
<td>4,626,700</td>
<td>285,279</td>
<td>14,291,772</td>
<td>5,204,161</td>
<td>722,766</td>
<td>25,130,678</td>
<td></td>
</tr>
<tr>
<td>FY2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Number of Awards</td>
<td>3</td>
<td>5</td>
<td>35</td>
<td>11</td>
<td>6</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>Percentage of Funding</td>
<td>3%</td>
<td>5%</td>
<td>68%</td>
<td>15%</td>
<td>9%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Dollar Amount</td>
<td>945,789</td>
<td>1,226,114</td>
<td>18,080,901</td>
<td>4,159,299</td>
<td>2,351,705</td>
<td>26,763,808</td>
<td></td>
</tr>
<tr>
<td>FY2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>Number of Awards</td>
<td>3</td>
<td>5</td>
<td>22</td>
<td>11</td>
<td>8</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>Percentage of Funding</td>
<td>20%</td>
<td>5%</td>
<td>47%</td>
<td>16%</td>
<td>12%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Dollar Amount</td>
<td>4,488,183</td>
<td>1,197,183</td>
<td>10,843,363</td>
<td>3,578,130</td>
<td>2,695,172</td>
<td>22,802,031</td>
<td></td>
</tr>
<tr>
<td>FY2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>Number of Awards</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>14</td>
<td>6</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>Percentage of Funding</td>
<td>34%</td>
<td>6%</td>
<td>14%</td>
<td>34%</td>
<td>12%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Dollar Amount</td>
<td>6,612,270</td>
<td>1,184,885</td>
<td>2,668,473</td>
<td>6,537,438</td>
<td>2,214,480</td>
<td>19,217,546</td>
<td></td>
</tr>
<tr>
<td>FY2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Number of Awards</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Percentage of Funding</td>
<td>32%</td>
<td>7%</td>
<td>31%</td>
<td>26%</td>
<td>5%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Dollar Amount</td>
<td>5,507,702</td>
<td>1,168,259</td>
<td>5,402,530</td>
<td>4,481,029</td>
<td>909,912</td>
<td>17,469,432</td>
<td></td>
</tr>
<tr>
<td>FY2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Number of Awards</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Percentage of Funding</td>
<td>44%</td>
<td>9%</td>
<td>42%</td>
<td>5%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Dollar Amount</td>
<td>5,370,869</td>
<td>1,121,675</td>
<td>5,252,915</td>
<td>597,120</td>
<td>0</td>
<td>12,342,579</td>
<td></td>
</tr>
</tbody>
</table>

Contact and leadership information is at http://nsdl.org/about/contact/.