

NSDL/NSTA Web Seminar:

Earth in Reverse: Magnetic Wiggles on the Ocean Floor

Tuesday, January 29, 2008

Today's NSDL Experts

Dr. Chris Massell Symons, Researcher at the Scripps Institution of Oceanography

Dr. Anthony Koppers, Associate Professor of Marine Geology and Geophysics at Oregon State University

Magnetic Wiggles!!!

Earth's Magnetic Field

BUT.....Magnetic North is NOT at the North Pole

AND...the Magnetic Field Reverses

- Field reverses ~1 time every 200,000 years on average.
- 400 times in last 330 million years.
- Last reversal was 780,000 years ago.

NORMAL REVERSE

Poll Question!

On average, how long does each magnetic reversal take to complete?

A. 10,000 years

B. 5,000 years

C. 1,000 years

D. 100 years

Let's pause for two questions from the audience....

Sampling the Seafloor

Early Maps of Seafloor Anomalies

Heirtzler et al., 1966

Raff and Mason, 1961

Sample Profiles across Mid-Ocean Ridges

Changing Spreading Rate = Modified Wiggle Pattern

Using the marker, identify the location of the spreading ridge on PROFILE 2.

Solution - Matching Peaks

Distance (Km)

PROFILE 2

How fast is the East Pacific rise spreading?

50 km/my	100 km/my	125 km/my			

Mid-Atlantic Spreading Ridge

Data across Reykjanes Ridge

What is the average spreading rate at the Reykjanes Ridge over the last 10 million years?

North American Plate

Eurasian Plate

Longitude (°W)	Latitude (°N)	Distance from Ridge (km)	Depth (m)	Sample Age (Ma)	Longitude (°W)	Latitude (°N)	Distance from Ridge (km)	Depth (m)	Sample Age (Ma)
32.70	60.86	-200	-2600	21.1	29.50	60.00	0	-1011	0.2
32.54	60.82	-190	-2588	19.9	29.34	59.95	10	-1108	0.8
32.37	60.78	-180	-2504	19.0	29.19	59.91	20	-1272	2.1
32.21	60.74	-170	-2465	17.9	29.04	59.86	30	-1410	3.2
32.05	60.70	-160	-2416	16.7	28.88	59.82	40	-1549	4.4
31.88	60.65	-150	-2401	15.7	28.73	59.77	50	-1415	5.6
31.72	60.61	-140	-2401	14.7	28.57	59.73	60	-1529	6.6
31.56	60.57	-130	-2328	13.7	28.42	59.68	70	-1668	7.7
31.40	60.53	-120	-2203	12.7	28.27	59.63	80	-1797	8.8
31.24	60.48	-110	-2103	11.4	28.12	59.59	90	-1848	9.9
31.08	60.44	-100	-1948	10.5	27.96	59.54	100	-2017	10.9
30.92	60.40	-90	-1832	9.4	27.81	59.49	110	-2194	11.9
30.76	60.35	-80	-1770	8.4	27.66	59.45	120	-2143	12.9
30.60	60.31	-70	-1657	7.5	27.51	59.40	130	-2040	13.9
30.44	60.27	-60	-1605	6.4	27.36	59.35	140	-2003	14.9
30.28	60.22	-50	-1599	5.4	27.21	59.31	150	-2080	16.1
30.13	60.18	-40	-1575	4.3	27.06	59.26	160	-2271	17.0
29.97	60.13	-30	-1473	3.2	26.91	59.21	170	-2389	17.9
29.81	60.09	-20	-1390	2.1	26.77	59.16	180	-2320	19.1
29.66	60.04	-10	-1169	1.2	26.62	59.11	190	-2213	20.1
29.50	60.00	0	-1011	0.2	26.47	59.07	200	-2235	21.3

Stamp One:

1 km/my

5 km/my

10 km/my

Let's pause for two questions from the audience....

How old are the wiggles?

Time Scale

- Age of the Earth
- Oldest Rock
- Oldest Mineral
- Oldest Seafloor

- ~ 4.6 Billion Years
- ~ 3.5 Billion Years
- ~ 3.0 Billions Years
- ~ XXX ???

Seafloor Age Map

Ocean Drilling Program 1983-2003

http://www.odplegacy.org/

From seafloor to analysis to

Argon-40/Argon-39 Dating

Cross Strike Distance [km] Hawaiian Lineations

Mesozoic Magnetic Anomalies

Unsolved Mysteries

- Why does the Earth's magnetic field reverse?
- WHEN will be the next reversal?

Orange = South

Dr. Chris Massell Symons

csymons@ucsd.edu

Dr. Anthony Koppers

akoppers@coas.oregonstate.edu

http://earthref.org/ERESE

Go to http://nsdl.org and click on the K-12 audience page to:

- Download our Seminar Resource List
- Utilize our blog featuring our presenters for the Fall Series sharing their insights on careers in science and science education:

http://expertvoices.nsdl.org/2007fall-nsta-sems/

http://learningcenter.nsta.org

National Science Teachers Association

Gerry Wheeler, Executive Director
Frank Owens, Associate Executive Director
Conferences and Programs
Al Byers, Assistant Executive Director e-Learning

NSTA Web Seminars

Flavio Mendez, Director Danielle Troiano, Project Coordinator Jeff Layman, Technical Coordinator

